Skip to main content

Advertisement

Log in

The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Johnson DR, Ma DJ, Buckner JC, Hammack JE (2012) Conditional probability of long-term survival in glioblastoma. Cancer 118(22):5608–5613

    Article  PubMed  Google Scholar 

  2. Capper D (2012) Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol 69(4):523

    Article  PubMed  Google Scholar 

  3. Holland EC (2001) Progenitor cells and glioma formation. Curr Opin Neurol 14(6):683–688

    Article  CAS  PubMed  Google Scholar 

  4. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Segerman A, Niklasson M, Haglund C, Bergström T, Jarvius M, Xie Y et al (2016) Clonal variation in drug and radiation response among glioma-initiating cells is linked to proneural-mesenchymal transition. Cell Rep 17(11):2994–3009

    Article  CAS  PubMed  Google Scholar 

  7. Paolillo M, Boselli C, Schinelli S (2018) Glioblastoma under siege: an overview of current therapeutic strategies. Brain Sci 8(1):15

    Article  PubMed Central  Google Scholar 

  8. Bovenberg MSS, Degeling MH, Tannous BA (2013) Cell-based immunotherapy against gliomas: from bench to bedside. Mol Ther 21(7):1297–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roos WP, Batista LFZ, Naumann SC, Wick W, Weller M, Menck CFM, Kaina B (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26(2):186–197

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Huang X, Yang Z, Gallego-Perez D, Ma J, Zhao X et al (2014) Targeted delivery of tumor suppressor microRNA-1 by transferrin- conjugated lipopolyplex nanoparticles to patient-derived glioblastoma stem cells. Curr Pharm Biotechnol 15(9):839–846

    Article  CAS  PubMed  Google Scholar 

  11. Gan HK, van den Bent M, Lassman AB, Reardon DA, Scott AM (2017) Antibody–drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat Rev Clin Oncol 14(11):695–707

    Article  CAS  PubMed  Google Scholar 

  12. Kaufmann JK, Chiocca EA (2014) Glioma virus therapies between bench and bedside. Neuro-Oncology 16(3):334–351

    Article  PubMed  PubMed Central  Google Scholar 

  13. Teng J, Hejazi S, Hiddingh L, Carvalho L, de Gooijer MC, Wakimoto H et al (2018) Recycling drug screen repurposes hydroxyurea as a sensitizer of glioblastomas to temozolomide targeting de novo DNA synthesis, irrespective of molecular subtype. Neuro-Oncology 20(5):642–654

    Article  CAS  PubMed  Google Scholar 

  14. Zheng N, Shabek N (2017) Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86:129–157

    Article  CAS  PubMed  Google Scholar 

  15. Hershko A, Ciechanover A, Varshavsky A (2000) The ubiquitin system. Nat Med 6(10):1073–1081

    Article  CAS  PubMed  Google Scholar 

  16. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81(1):203–229

    Article  CAS  PubMed  Google Scholar 

  17. Kudriaeva AA, Belogurov AA (2019) Proteasome: a nanomachinery of creative destruction. Biochem Mosc 84(S1):159–192

    Article  CAS  Google Scholar 

  18. Jang HH (2018) Regulation of protein degradation by proteasomes in cancer. J Cancer Prevent 23(4):153–161

    Article  Google Scholar 

  19. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, Avni N, Ciechanover A (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 26(8):869–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yi JJ, Ehlers MD (2007) Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev 59(1):14–39

    Article  CAS  PubMed  Google Scholar 

  21. Lehman NL (2009) The ubiquitin proteasome system in neuropathology. Acta Neuropathol 118(3):329–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mansour MA (2018) Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol 101:80–93

    Article  CAS  PubMed  Google Scholar 

  23. Thaker NG, Zhang F, McDonald PR, Shun TY, Lewen MD, Pollack IF, Lazo JS (2009) Identification of survival genes in human glioblastoma cells by small interfering RNA screening. Mol Pharmacol 76(6):1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wagner KW, Sapinoso LM, El-Rifai W, Frierson HF, Butz N, Mestan J et al (2004) Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene 23(39):6621–6629

    Article  CAS  PubMed  Google Scholar 

  25. Donato G, Iofrida G, Lavano A, Volpentesta G, Signorelli F, Pallante PL et al (2008) Analysis of UbcH10 expression represents a useful tool for the diagnosis and therapy of astrocytic tumors. Clin Neuropathol 27(07):219–223

    Article  CAS  PubMed  Google Scholar 

  26. Jiang L, Huang C-G, Lu Y-C, Luo C, Hu G-H, Liu H-M et al (2008) Expression of ubiquitin-conjugating enzyme E2C/UbcH10 in astrocytic tumors. Brain Res 1201:161–166

    Article  CAS  PubMed  Google Scholar 

  27. Ma R, Kang X, Zhang G, Fang F, Du Y, Lv H (2016) High expression of UBE2C is associated with the aggressive progression and poor outcome of malignant glioma. Oncol Lett 11(3):2300–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alafate W, Zuo J, Deng Z, Guo X, Wu W, Zhang W et al (2019) Combined elevation of AURKB and UBE2C predicts severe outcomes and therapy resistance in glioma. Pathol Res Pract 215(10):152557

    Article  CAS  PubMed  Google Scholar 

  29. Jiang L, Bao Y, Luo C, Hu G, Huang C, Ding X et al (2010) Knockdown of ubiquitin-conjugating enzyme E2C/UbcH10 expression by RNA interference inhibits glioma cell proliferation and enhances cell apoptosis in vitro. J Cancer Res Clin Oncol 136(2):211–217

    Article  CAS  PubMed  Google Scholar 

  30. Hu L, Li X, Liu Q, Xu J, Ge H, Wang Z et al (2017) UBE2S, a novel substrate of Akt1, associates with Ku70 and regulates DNA repair and glioblastoma multiforme resistance to chemotherapy. Oncogene 36(8):1145–1156

    Article  CAS  PubMed  Google Scholar 

  31. Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N et al (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. JNCI J Nat Cancer Inst 93(16):1246–1256

    Article  CAS  PubMed  Google Scholar 

  32. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  CAS  PubMed  Google Scholar 

  33. Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A (2007) Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem 282(29):21206–21212

    Article  CAS  PubMed  Google Scholar 

  34. Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF, Valerie K (2009) Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 8(8):730–738

    Article  CAS  PubMed  Google Scholar 

  35. Piva R, Cancelli I, Cavalla P, Bortolotto S, Dominguez J, Draetta GF, Schiffer D (1999) Proteasome-dependent degradation of p27/kip1 in gliomas. J Neuropathol Exp Neurol 58(7):691–696

    Article  CAS  PubMed  Google Scholar 

  36. Piva R, Cavalla P, Bortolotto S, Cordera S, Richiardi P, Schiffer D (1997) p27/kip1 expression in human astrocytic gliomas. Neurosci Lett 234(2–3):127–130

    Article  CAS  PubMed  Google Scholar 

  37. Soos TJ, Kiyokawa H, Yan JS, Rubin MS, Giordano A, DeBlasio A et al (1996) Formation of p27-CDK complexes during the human mitotic cell cycle. Cell Growth Differ 7(2):135–146

    CAS  PubMed  Google Scholar 

  38. Kipreos, E. T., & Pagano, M. (2000). The F-box protein family. Genome Biology, 1(5), REVIEWS3002.

  39. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A (2001) The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 3(3):321–324

    Article  CAS  PubMed  Google Scholar 

  40. Schiffer D, Cavalla P, Fiano V, Ghimenti C, Piva R (2002) Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neurosci Lett 328(2):125–128

    Article  CAS  PubMed  Google Scholar 

  41. Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H, Sun H (2001) PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27KIP1 through the ubiquitin E3 ligase SCFSKP2. Curr Biol 11(4):263–267

    Article  CAS  PubMed  Google Scholar 

  42. Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D et al (2008) Targeting the p27 E3 ligase SCFSkp2 results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111(9):4690–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ (2012) Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biol 19(12):1515–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chan C-H, Morrow JK, Li C-F, Gao Y, Jin G, Moten A et al (2013) Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154(3):556–568

    Article  CAS  PubMed  Google Scholar 

  45. Hede S-M, Savov V, Weishaupt H, Sangfelt O, Swartling FJ (2014) Oncoprotein stabilization in brain tumors. Oncogene 33(39):4709–4721

    Article  CAS  PubMed  Google Scholar 

  46. Hollstein PE, Cichowski K (2013) Identifying the ubiquitin ligase complex that regulates the NF1 tumor suppressor and Ras. Cancer Discov 3(8):880–893

    Article  CAS  PubMed  Google Scholar 

  47. McGillicuddy LT, Fromm JA, Hollstein PE, Kubek S, Beroukhim R, De Raedt T et al (2009) Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis. Cancer Cell 16(1):44–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bernards A (2003) GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta (BBA) - Rev Cancer 1603(2):47–82

    Article  CAS  Google Scholar 

  49. Yu P, Chen Y, Tagle DA, Cai T (2002) PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain. Genomics 79(6):869–874

    Article  CAS  PubMed  Google Scholar 

  50. Lignitto L, Arcella A, Sepe M, Rinaldi L, Delle Donne R, Gallo A et al (2013) Proteolysis of MOB1 by the ubiquitin ligase Praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun 4(1):1822

    Article  PubMed  Google Scholar 

  51. Pan S-J, Zhan S-K, Ji W-Z, Pan Y-X, Liu W, Li D-Y et al (2015) Ubiquitin-protein ligase E3C promotes glioma progression by mediating the ubiquitination and degrading of Annexin A7. Sci Rep 5(1):11066

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bredel M, Scholtens DM, Harsh GR, Bredel C, Chandler JP, Renfrow JJ et al (2009) A network model of a cooperative genetic landscape in brain tumors. JAMA 302(3):261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632

    Article  CAS  PubMed  Google Scholar 

  54. Gama, V., Swahari, V., Schafer, J., Kole, A. J., Evans, A., Huang, Y., et al. (2014). The E3 ligase PARC mediates the degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. Science Signaling, 7(334), ra67–ra67.

  55. Kruse J-P, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299

    Article  CAS  PubMed  Google Scholar 

  57. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor–oncoprotein network. Trends Biochem Sci 27(9):462–467

    Article  CAS  PubMed  Google Scholar 

  59. Kim H, Kwak N-J, Lee JY, Choi BH, Lim Y, Ko YJ et al (2004) Merlin neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem 279(9):7812–7818

    Article  CAS  PubMed  Google Scholar 

  60. Park JH, Smith RJ, Shieh S-Y, Roeder RG (2011) The GAS41-PP2Cβ complex dephosphorylates p53 at serine 366 and regulates its stability. J Biol Chem 286(13):10911–10917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fischer U, Heckel D, Michel A, Janka M, Hulsebos T, Meese E (1997) Cloning of a novel transcription factor-like gene amplified in human glioma including astrocytoma grade I. Hum Mol Genet 6(11):1817–1822

    Article  CAS  PubMed  Google Scholar 

  62. Michiue H, Tomizawa K, Matsushita M, Tamiya T, Lu Y-F, Ichikawa T et al (2005) Ubiquitination-resistant p53 protein transduction therapy facilitates anti-cancer effect on the growth of human malignant glioma cells. FEBS Lett 579(18):3965–3969

    Article  CAS  PubMed  Google Scholar 

  63. Mukherjee S, Tucker-Burden C, Kaissi E, Newsam A, Duggireddy H, Chau M et al (2018) CDK5 inhibition resolves PKA/cAMP-independent activation of CREB1 signaling in glioma stem cells. Cell Rep 23(6):1651–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sang Y, Li Y, Zhang Y, Alvarez AA, Yu B, Zhang W et al (2019) CDK5-dependent phosphorylation and nuclear translocation of TRIM59 promotes macroH2A1 ubiquitination and tumorigenicity. Nat Commun 10(1):4013

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sang Y, Li Y, Song L, Alvarez AA, Zhang W, Lv D et al (2018) TRIM59 promotes gliomagenesis by inhibiting TC45 dephosphorylation of STAT3. Cancer Res 78(7):1792–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jin J (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18(21):2573–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hagedorn M, Delugin M, Abraldes I, Allain N, Belaud-Rotureau MA, Turmo M et al (2007) FBXW7/hCDC4 controls glioma cell proliferation in vitro and is a prognostic marker for survival in glioblastoma patients. Cell Div 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32(4):520–537.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mao J-H, Kim I-J, Wu D, Climent J, Kang HC, DelRosario R, Balmain A (2008) FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 321(5895):1499–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Popov N, Schülein C, Jaenicke LA, Eilers M (2010) Ubiquitylation of the amino terminus of Myc by SCFβ-TrCP antagonizes SCFFbw7-mediated turnover. Nat Cell Biol 12(10):973–981

    Article  CAS  PubMed  Google Scholar 

  71. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S et al (2013) Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3(5):512–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Giet R, Petretti C, Prigent C (2005) Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 15(5):241–250

    Article  CAS  PubMed  Google Scholar 

  73. Hainaud P, Contrerès J-O, Villemain A, Liu L-X, Plouët J, Tobelem G, Dupuy E (2006) The role of the vascular endothelial growth factor–delta-like 4 ligand/Notch4-Ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res 66(17):8501–8510

    Article  CAS  PubMed  Google Scholar 

  74. Lin J, Ji A, Qiu G, Feng H, Li J, Li S et al (2018) FBW7 is associated with prognosis, inhibits malignancies and enhances temozolomide sensitivity in glioblastoma cells. Cancer Sci 109(4):1001–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. JNCI: J Nat Cancer Inst 110(3):304–315

    Article  CAS  Google Scholar 

  76. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I et al (2010) Somatic mutations of the Parkinson’s disease–associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42(1):77–82

    Article  CAS  PubMed  Google Scholar 

  77. Yeo CWS, Ng FSL, Chai C, Tan JMM, Koh GRH, Chong YK et al (2012) Parkin pathway activation mitigates glioma cell proliferation and predicts patient survival. Cancer Res 72(10):2543–2553

    Article  CAS  PubMed  Google Scholar 

  78. Wang H, Jiang Z, Na M, Ge H, Tang C, Shen H, Lin Z (2017) PARK2 negatively regulates the metastasis and epithelial-mesenchymal transition of glioblastoma cells via ZEB1. Oncol Lett 14(3):2933–2939

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin L-Y, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19(6):4535–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu T, Zhou Q, Zhou J, Huang Y, Yan Y, Li W et al (2011) Carboxyl terminus of Hsp70-interacting protein (CHIP) contributes to human glioma oncogenesis. Cancer Sci 102(5):959–966

    Article  CAS  PubMed  Google Scholar 

  81. Xu T, Wang H, Jiang M, Yan Y, Li W, Xu H et al (2017) The E3 ubiquitin ligase CHIP/miR-92b/PTEN regulatory network contributes to tumorigenesis of glioblastoma. Am J Cancer Res 7(2):289–300

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Paul I, Ahmed SF, Bhowmik A, Deb S, Ghosh MK (2013) The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 32(10):1284–1295

    Article  CAS  PubMed  Google Scholar 

  83. Shindo H, Tani E, Matsumuto T, Hashimoto T, Furuyama J (1993) Stabilization of c-Myc protein in human glioma cells. Acta Neuropathol 86(4):345–352

    Article  CAS  PubMed  Google Scholar 

  84. Ko HR, Kim CK, Lee SB, Song J, Lee K-H, Kim KK et al (2014) P42 Ebp1 regulates the proteasomal degradation of the p85 regulatory subunit of PI3K by recruiting a chaperone-E3 ligase complex HSP70/CHIP. Cell Death Dis 5(3):e1131–e1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Y, Hamburger AW (2004) Heregulin regulates the ability of the ErbB3-binding Protein Ebp1 to bind E2F promoter elements and repress E2F-mediated transcription. J Biol Chem 279(25):26126–26133

    Article  CAS  PubMed  Google Scholar 

  86. Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30(4):194–204

    Article  CAS  PubMed  Google Scholar 

  87. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Article  CAS  Google Scholar 

  88. Riddick G, Fine HA (2011) Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol 7(8):439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  90. Fang L, Lu W, Choi HH, Yeung S-CJ, Tung J-Y, Hsiao C-D et al (2015) ERK2-dependent phosphorylation of CSN6 Is critical in colorectal cancer development. Cancer Cell 28(2):183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hou J, Deng Q, Zhou J, Zou J, Zhang Y, Tan P et al (2017) CSN6 controls the proliferation and metastasis of glioblastoma by CHIP-mediated degradation of EGFR. Oncogene 36(8):1134–1144

    Article  CAS  PubMed  Google Scholar 

  92. Schmidt MHH, Dikic I (2005) The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6(12):907–919

    Article  CAS  PubMed  Google Scholar 

  93. Peschard P, Park M (2003) Escape from Cbl-mediated downregulation. Cancer Cell 3(6):519–523

    Article  CAS  PubMed  Google Scholar 

  94. Liang M-L, Ma J, Ho M, Solomon L, Bouffet E, Rutka JT, Hawkins C (2008) Tyrosine kinase expression in pediatric high grade astrocytoma. J Neuro-Oncol 87(3):247–253

    Article  Google Scholar 

  95. Zaky W, Manton C, Miller CP, Khatua S, Gopalakrishnan V, Chandra J (2017) The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities. Cancer Metastasis Rev 36(4):617–633

    Article  CAS  PubMed  Google Scholar 

  96. Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60(5):1383–1387

    CAS  PubMed  Google Scholar 

  97. Schmidt MHH, Furnari FB, Cavenee WK, Bogler O (2003) Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci 100(11):6505–6510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Seong MW, Park JH, Yoo HM, Yang SW, Oh KH, Ka SH et al (2014) c-Cbl regulates αPix-mediated cell migration and invasion. Biochem Biophys Res Commun 455(3-4):153–158

    Article  CAS  PubMed  Google Scholar 

  99. Yokota T, Kouno J, Adachi K, Takahashi H, Teramoto A, Matsumoto K et al (2006) Identification of histological markers for malignant glioma by genome-wide expression analysis: dynein, α-PIX and sorcin. Acta Neuropathol 111(1):29–38

    Article  CAS  PubMed  Google Scholar 

  100. Seong MW, Ka SH, Park JH, Park JH, Yoo HM, Yang SW et al (2015) Deleterious c-Cbl exon skipping contributes to human glioma. Neoplasia 17(6):518–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu K, Zhang C, Li B, Xie W, Zhang J, Nie X et al (2018) Mutual stabilization between TRIM9 short isoform and MKK6 potentiates p38 signaling to synergistically suppress glioblastoma progression. Cell Rep 23(3):838–851

    Article  CAS  PubMed  Google Scholar 

  102. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12(1):1–13

    Article  CAS  PubMed  Google Scholar 

  103. Han J, Sun P (2007) The pathways to tumor suppression via route p38. Trends Biochem Sci 32(8):364–371

    Article  CAS  PubMed  Google Scholar 

  104. Zhang J, Zhang C, Cui J, Ou J, Han J, Qin Y et al (2017) TRIM45 functions as a tumor suppressor in the brain via its E3 ligase activity by stabilizing p53 through K63-linked ubiquitination. Cell Death Dis 8(5):e2831–e2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang Y, Li Y, Qi X, Yuan W, Ai J, Zhu C et al (2004) TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of ElK-1 and AP-1. Biochem Biophys Res Commun 323(1):9–16

    Article  CAS  PubMed  Google Scholar 

  106. Khan M, Muzumdar D, Shiras A (2019) Attenuation of tumor suppressive function of FBXO16 ubiquitin ligase activates Wnt signaling in glioblastoma. Neoplasia 21(1):106–116

    Article  CAS  PubMed  Google Scholar 

  107. Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP (2003) Structure of a β-TrCP1-Skp1-β-catenin complex. Mol Cell 11(6):1445–1456

    Article  CAS  PubMed  Google Scholar 

  108. Lee J-K, Chang N, Yoon Y, Yang H, Cho H, Kim E et al (2016) USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro-Oncology 18(1):37–47

    Article  CAS  PubMed  Google Scholar 

  109. Suresh B, Lee J, Kim H, Ramakrishna S (2016) Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death Differ 23(8):1257–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheng C, Niu C, Yang Y, Wang Y, Lu M (2013) Expression of HAUSP in gliomas correlates with disease progression and survival of patients. Oncol Rep 29(5):1730–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bhattacharya S, Ghosh MK (2014) HAUSP, a novel deubiquitinase for Rb - MDM2 the critical regulator. FEBS J 281(13):3061–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yi L, Cui Y, Xu Q, Jiang Y (2016) Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol Rep 36(5):2935–2945

    Article  CAS  PubMed  Google Scholar 

  113. Cheng C, Dong Y, Niu W, Niu C (2020) HAUSP promoted the growth of glioma cells in vitro and in vivo via stabilizing NANOG. Pathol Res Pract 216(4):152883

    Article  CAS  PubMed  Google Scholar 

  114. Xu L, Li J, Bao Z, Xu P, Chang H, Wu J et al (2017) Silencing of OTUB1 inhibits migration of human glioma cells in vitro. Neuropathology 37(3):217–226

    Article  CAS  PubMed  Google Scholar 

  115. Rahme GJ, Zhang Z, Young AL, Cheng C, Bivona EJ, Fiering SN et al (2016) PDGF engages an E2F-USP1 signaling pathway to support ID2-mediated survival of proneural glioma cells. Cancer Res 76(10):2964–2976

    Article  CAS  PubMed  Google Scholar 

  116. Ma L, Lin K, Chang G, Chen Y, Yue C, Guo Q et al (2018) Aberrant activation of β-catenin signaling drives glioma tumorigenesis via USP1-mediated stabilization of EZH2. Cancer Res 79(1):72–85

    Article  PubMed  Google Scholar 

  117. Fan L, Chen Z, Wu X, Cai X, Feng S, Lu J et al (2019) Ubiquitin-specific protease 3 promotes glioblastoma cell invasion and epithelial–mesenchymal transition via stabilizing Snail. Mol Cancer Res 17(10):1975–1984

    Article  CAS  PubMed  Google Scholar 

  118. Qin N, Han F, Li L, Ge Y, Lin W, Wang J et al (2018) Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity. Oncol Lett 17(1):958–964

    PubMed  PubMed Central  Google Scholar 

  119. Zhou Y, Liang P, Ji W, Yu Z, Chen H, Jiang L (2019) Ubiquitin-specific protease 4 promotes glioblastoma multiforme via activating ERK pathway. OncoTargets Therapy 12:1825–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Izaguirre DI, Zhu W, Hai T, Cheung HC, Krahe R, Cote GJ (2012) PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis. Mol Carcinog 51(11):895–906

    Article  CAS  PubMed  Google Scholar 

  121. Panner A, Crane CA, Weng C, Feletti A, Fang S, Parsa AT, Pieper RO (2010) Ubiquitin-specific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIP S stability and TRAIL sensitivity in glioblastoma multiforme. Cancer Res 70(12):5046–5053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang B, Zhang S, Wang Z, Yang C, Ouyang W, Zhou F et al (2016) Deubiquitinase USP9X deubiquitinates β-catenin and promotes high grade glioma cell growth. Oncotarget 7(48):79515–79525

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen Z, Wang H-W, Wang S, Fan L, Feng S, Cai X et al (2019) USP9X deubiquitinates ALDH1A3 and maintains mesenchymal identity in glioblastoma stem cells. J Clin Investig 129(5):2043–2055

    Article  PubMed  PubMed Central  Google Scholar 

  124. Grunda JM, Nabors LB, Palmer CA, Chhieng DC, Steg A, Mikkelsen T et al (2006) Increased expression of Thymidylate Synthetase (TS), Ubiquitin Specific Protease 10 (USP10) and Survivin is associated with poor survival in glioblastoma multiforme (GBM). J Neuro-Oncol 80(3):261–274

    Article  CAS  Google Scholar 

  125. Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang K et al (2017) Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med 214(1):245–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li ZH, Yu Y, Du C, Fu H, Wang J, Tian Y (2013) RNA interference-mediated USP22 gene silencing promotes human brain glioma apoptosis and induces cell cycle arrest. Oncol Lett 5(4):1290–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liang J, Zhang X, Xie S, Zhou X, Shi Q, Hu J et al (2014) Ubiquitin-specific protease 22: a novel molecular biomarker in glioma prognosis and therapeutics. Med Oncol 31(4):899

    Article  PubMed  Google Scholar 

  128. Liang J, Zhang X-L, Li S, Xie S, Wang W-F, Yu R-T (2018) Ubiquitin-specific protease 22 promotes the proliferation, migration and invasion of glioma cells. Cancer Biomark 23(3):381–389

    Article  CAS  PubMed  Google Scholar 

  129. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J et al (2016) Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol 18(9):954–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Qiu G-Z, Mao X-Y, Ma Y, Gao X-C, Wang Z, Jin M-Z et al (2018) Ubiquitin-specific protease 22 acts as an oncoprotein to maintain glioma malignancy through deubiquitinating B cell-specific Moloney murine leukemia virus integration site 1 for stabilization. Cancer Sci 109(7):2199–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang Z, Song Q, Xue J, Zhao Y, Qin S (2016) Ubiquitin-specific protease 28 is overexpressed in human glioblastomas and contributes to glioma tumorigenicity by regulating MYC expression. Exp Biol Med 241(3):255–264

    Article  CAS  Google Scholar 

  132. Ding K, Ji J, Zhang X, Huang B, Chen A, Zhang D et al (2019) RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 38(37):6414–6428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H et al (2017) Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget 8(35):58231–58246

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhou A, Lin K, Zhang S, Ma L, Xue J, Morris S et al (2017) Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep 18(8):1318–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tao B-B, He H, Shi X, Wang C, Li W, Li B et al (2013) Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J Clin Neurosci 20(5):717–720

    Article  CAS  PubMed  Google Scholar 

  136. Wang C-L, Wang J-Y, Liu Z-Y, Ma X-M, Wang X-W, Jin H et al (2014) Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 35(7):1500–1509

    Article  CAS  PubMed  Google Scholar 

  137. Boustani MR, Khoshnood RJ, Nikpasand F, Taleshi Z, Ahmadi K, Yahaghi E, Goudarzi PK (2016) Overexpression of ubiquitin-specific protease 2a (USP2a) and nuclear factor erythroid 2-related factor 2 (Nrf2) in human gliomas. J Neurol Sci 363:249–252

    Article  CAS  PubMed  Google Scholar 

  138. Wu H-C, Lin Y-C, Liu C-H, Chung H-C, Wang Y-T, Lin Y-W et al (2014) USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nat Commun 5(1):3214

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hu M, Chen H, Han C, Lan J, Xu Y, Li C et al (2016) Expression and functional implications of USP17 in glioma. Neurosci Lett 616:125–131

    Article  CAS  PubMed  Google Scholar 

  140. Kit Leng Lui S, Iyengar PV, Jaynes P, Isa ZFBA, Pang B, Tan TZ, Eichhorn PJA (2017) USP26 regulates TGF-β signaling by deubiquitinating and stabilizing SMAD7. EMBO Rep 18(5):797–808

    Article  PubMed  PubMed Central  Google Scholar 

  141. Eichhorn PJA, Rodón L, Gonzàlez-Juncà A, Dirac A, Gili M, Martínez-Sáez E et al (2012) USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med 18(3):429–435

    Article  CAS  PubMed  Google Scholar 

  142. Oikonomaki M, Bady P, Hegi ME (2017) Ubiquitin Specific Peptidase 15 (USP15) suppresses glioblastoma cell growth via stabilization of HECTD1 E3 ligase attenuating Wnt pathway activity. Oncotarget 8(66):110490–110502

    Article  PubMed  PubMed Central  Google Scholar 

  143. Xu K, Pei H, Zhang Z, Wang H, Li L, Xia Q (2018) Ubiquitin-specific protease 15 promotes tumor cell invasion and proliferation in glioblastoma. Oncol Lett 15(3):3846–3851

    PubMed  PubMed Central  Google Scholar 

  144. Tani E, Kitagawa H, Ikemoto H, Matsumoto T (2001) Proteasome inhibitors induce Fas-mediated apoptosis by c-Myc accumulation and subsequent induction of FasL message in human glioma cells. FEBS Lett 504(1–2):53–58

    Article  CAS  PubMed  Google Scholar 

  145. Kim S, Choi K, Choi C, Kwon D, Benveniste EN (2004) Ubiquitin-proteasome pathway as a primary defender against TRAIL-mediated cell death. Cell Mol Life Sci 61(9):1075–1081

    Article  CAS  PubMed  Google Scholar 

  146. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M (2008) Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 75(6):2288–2297

    Article  Google Scholar 

  147. Kahana S, Finniss S, Cazacu S, Xiang C, Lee HK, Brodie S et al (2011) Proteasome inhibitors sensitize glioma cells and glioma stem cells to TRAIL-induced apoptosis by PKCε-dependent downregulation of AKT and XIAP expressions. Cell Signal 23(8):1348–1357

    Article  CAS  PubMed  Google Scholar 

  148. Unterkircher T, Cristofanon S, Vellanki SHK, Nonnenmacher L, Karpel-Massler G, Wirtz CR et al (2011) Bortezomib primes glioblastoma, including glioblastoma stem cells, for TRAIL by increasing tBid stability and mitochondrial apoptosis. Clin Cancer Res 17(12):4019–4030

    Article  CAS  PubMed  Google Scholar 

  149. Asklund T, Kvarnbrink S, Holmlund C, Wibom C, Bergenheim T, Henriksson R, Hedman H (2012) Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Res 32(7):2407–2413

    CAS  PubMed  Google Scholar 

  150. Bota DA, Alexandru D, Keir ST, Bigner D, Vredenburgh J, Friedman SH (2013) Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells’ VEGF production and angiogenesis: Laboratory investigation. J Neurosurg 119(6):1415–1423

    Article  PubMed  PubMed Central  Google Scholar 

  151. Low J, Blosser W, Dowless M, Ricci-Vitiani L, Pallini R, de Maria R, Stancato L (2012) Knockdown of ubiquitin ligases in glioblastoma cancer stem cells leads to cell death and differentiation. J Biomol Screen 17(2):152–162

    Article  CAS  PubMed  Google Scholar 

  152. Yoo YD, Lee D, Cha-Molstad H, Kim H, Mun SR, Ji C et al (2017) Glioma-derived cancer stem cells are hypersensitive to proteasomal inhibition. EMBO Rep 18(1):150–168

    Article  CAS  PubMed  Google Scholar 

  153. Phuphanich S, Supko JG, Carson KA, Grossman SA, Burt Nabors L, Mikkelsen T et al (2010) Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. J Neuro-Oncol 100(1):95–103

    Article  CAS  Google Scholar 

  154. Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F et al (2012) Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-Oncology 14(2):215–221

    Article  CAS  PubMed  Google Scholar 

  155. Demarchi F, Brancolini C (2005) Altering protein turnover in tumor cells: New opportunities for anti-cancer therapies. Drug Resist Updat 8(6):359–368

    Article  CAS  PubMed  Google Scholar 

  156. Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, Koeffler HP (2005) Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24(3):344–354

    Article  CAS  PubMed  Google Scholar 

  157. Tianhu Z, Shiguang Z, Xinghan L (2010) Bmf is upregulated by PS-341-mediated cell death of glioma cells through JNK phosphorylation. Mol Biol Rep 37(3):1211–1219

    Article  PubMed  Google Scholar 

  158. Seol D-W (2011) p53-Independent up-regulation of a TRAIL receptor DR5 by proteasome inhibitors: a mechanism for proteasome inhibitor-enhanced TRAIL-induced apoptosis. Biochem Biophys Res Commun 416(1–2):222–225

    Article  CAS  PubMed  Google Scholar 

  159. Vlachostergios PJ, Hatzidaki E, Stathakis NE, Koukoulis GK, Papandreou CN (2013) Bortezomib downregulates MGMT expression in T98G glioblastoma cells. Cell Mol Neurobiol 33(3):313–318

    Article  CAS  PubMed  Google Scholar 

  160. Flexner C (1998) HIV-protease inhibitors. N Engl J Med 338(18):1281–1293

    Article  CAS  PubMed  Google Scholar 

  161. Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH (2002) The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res 62(18):5230–5235

    CAS  PubMed  Google Scholar 

  162. Grund K, Ahmadi R, Jung F, Funke V, Gdynia G, Benner A et al (2008) Troglitazone-mediated sensitization to TRAIL-induced apoptosis is regulated by proteasome-dependent degradation of FLIP and ERK1/2-dependent phosphorylation of BAD. Cancer Biol Ther 7(12):1982–1990

    Article  CAS  PubMed  Google Scholar 

  163. Gerson SL (2002) Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 20(9):2388–2399

    Article  CAS  PubMed  Google Scholar 

  164. Marikovsky M, Ziv V, Nevo N, Harris-Cerruti C, Mahler O (2003) Cu/Zn superoxide dismutase plays important role in immune response. J Immunol 170(6):2993–3001

    Article  CAS  PubMed  Google Scholar 

  165. Loo TW, Bartlett MC, Clarke DM (2004) Disulfiram metabolites permanently inactivate the human multidrug resistance P-Glycoprotein. Mol Pharm 1(6):426–433

    Article  CAS  PubMed  Google Scholar 

  166. Hothi P, Martins TJ, Chen L, Deleyrolle L, Yoon J-G, Reynolds B, Foltz G (2012) High-throughput chemical screens identify Disulfiram as an inhibitor of human glioblastoma stem cells. Oncotarget 3(10):1124–1136

    Article  PubMed  PubMed Central  Google Scholar 

  167. Paranjpe A, Zhang R, Ali-Osman F, Bobustuc GC, Srivenugopal KS (2014) Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. Carcinogenesis 35(3):692–702

    Article  CAS  PubMed  Google Scholar 

  168. Huang J, Chaudhary R, Cohen AL, Fink K, Goldlust S, Boockvar J et al (2019) A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neuro-Oncol 142(3):537–544

    Article  CAS  Google Scholar 

  169. Foti C, Florean C, Pezzutto A, Roncaglia P, Tomasella A, Gustincich S, Brancolini C (2009) Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin-proteasome system. Mol Cancer Ther 8(11):3140–3150

    Article  CAS  PubMed  Google Scholar 

  170. Monticone M, Biollo E, Fabiano A, Fabbi M, Daga A, Romeo F et al (2009) z-Leucinyl-leucinyl-norleucinal induces apoptosis of human glioblastoma tumor-initiating cells by proteasome inhibition and mitotic arrest response. Mol Cancer Res 7(11):1822–1834

    Article  CAS  PubMed  Google Scholar 

  171. Nomura M, Nomura N, Yamashita J (2005) Geldanamycin-induced degradation of Chk1 is mediated by proteasome. Biochem Biophys Res Commun 335(3):900–905

    Article  CAS  PubMed  Google Scholar 

  172. Nomura N, Nomura M, Newcomb EW, Zagzag D (2007) Geldanamycin induces G2 arrest in U87MG glioblastoma cells through downregulation of Cdc2 and cyclin B1. Biochem Pharmacol 73(10):1528–1536

    Article  CAS  PubMed  Google Scholar 

  173. Liu T, Wu C, Weng G, Zhao Z, He X, Fu C et al (2017) Bufalin inhibits cellular proliferation and cancer stem cell-like phenotypes via upregulation of MiR-203 in glioma. Cell Physiol Biochem 44(2):671–681

    Article  PubMed  Google Scholar 

  174. Lan Y-L, Wang X, Lou J-C, Xing J-S, Yu Z-L, Wang H et al (2018) Bufalin inhibits glioblastoma growth by promoting proteasomal degradation of the Na+/K+-ATPase α1 subunit. Biomed Pharmacother 103:204–215

    Article  CAS  PubMed  Google Scholar 

  175. Cecarini V, Quassinti L, Di Blasio A, Bonfili L, Bramucci M, Lupidi G et al (2010) Effects of thymoquinone on isolated and cellular proteasomes. FEBS J 277(9):2128–2141

    Article  CAS  PubMed  Google Scholar 

  176. Barliya T, Mandel M, Livnat T, Weinberger D, Lavie G (2011) Degradation of HIF-1alpha under hypoxia combined with induction of Hsp90 polyubiquitination in cancer cells by Hypericin: a unique cancer therapy. PLoS ONE 6(9):e22849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Couldwell WT, Surnock AA, Tobia AJ, Cabana BE, Stillerman CB, Forsyth PA et al (2011) A phase 1/2 study of orally administered synthetic hypericin for treatment of recurrent malignant gliomas. Cancer 117(21):4905–4915

    Article  CAS  PubMed  Google Scholar 

  178. Xu R, Nie X, Jia O, Xing Y, Li D, Dong X, Liu R (2015) Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin-proteasome pathway. Drug Design, Dev Ther 5611

  179. Wang Z, Yu G, Liu Z, Zhu J, Chen C, Liu R, Xu R (2018) Paeoniflorin inhibits glioblastoma growth in vivo and in vitro: a role for the Triad3A-dependent ubiquitin proteasome pathway in TLR4 degradation. Cancer Manag Res 10:887–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang WX, Sun ZH, Chen HM, Xu BN, Wang FY (2015) Role and mechanism of sophoridine on proliferation inhibition in human glioma U87MG cell line. Int J Clin Exp Med 8(1):464–471

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Jia W-Q, Wang Z-T, Zou M-M, Lin J-H, Li Y-H, Zhang L, Xu R-X (2018) Verbascoside inhibits glioblastoma cell proliferation, migration and invasion while promoting apoptosis through upregulation of protein tyrosine phosphatase SHP-1 and inhibition of STAT3 phosphorylation. Cell Physiol Biochem 47(5):1871–1882

    Article  CAS  PubMed  Google Scholar 

  182. Hei B, Wang J, Wu G, Ouyang J, Liu R (2019) Verbascoside suppresses the migration and invasion of human glioblastoma cells via targeting c-Met-mediated epithelial-mesenchymal transition. Biochem Biophys Res Commun 514(4):1270–1277

    Article  CAS  PubMed  Google Scholar 

  183. Dützmann S, Schiborr C, Kocher A, Pilatus U, Hattingen E, Weissenberger J et al (2016) Intratumoral concentrations and effects of orally administered micellar curcuminoids in glioblastoma patients. Nutr Cancer 68(6):943–948

    Article  PubMed  Google Scholar 

  184. Huang B-R, Tsai C-H, Chen C-C, Way T-D, Kao J-Y, Liu Y-S et al (2019) Curcumin promotes Connexin 43 degradation and temozolomide-induced apoptosis in glioblastoma cells. Am J Chin Med 47(03):657–674

    Article  CAS  PubMed  Google Scholar 

  185. Badr CE, Van Hoppe S, Dumbuya H, Tjon-Kon-Fat L-A, Tannous BA (2013) Targeting cancer cells with the natural compound obtusaquinone. JNCI: J Nat Cancer Inst 105(9):643–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Badr CE, da Hora CC, Kirov AB, Tabet E, Amante R, Maksoud S et al (2020) Obtusaquinone: a cysteine-modifying compound that targets Keap1 for degradation. ACS Chem Biol 15(6):1445–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Teng J, Lashgari G, Tabet EI, Tannous BA (2020) The natural compound obtusaquinone targets pediatric high-grade gliomas through ROS-mediated ER stress. Neuro-Oncol Adv 2(1):vdaa106

    Article  Google Scholar 

  188. Mathew R, White E (2007) Why sick cells produce tumors: the protective role of autophagy. Autophagy 3(5):502–504

    Article  CAS  PubMed  Google Scholar 

  189. Ge P, Zhang J, Wang X, Meng F, Li W, Luan Y et al (2009) Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells. Acta Pharmacol Sin 30(7):1046–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ito H, Aoki H, Kühnel F, Kondo Y, Kubicka S, Wirth T et al (2006) Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. JNCI: J Nat Cancer Inst 98(9):625–636

    Article  CAS  PubMed  Google Scholar 

  191. Hansen K, Wagner B, Hamel W, Schweizer M, Haag F, Westphal M, Lamszus K (2007) Autophagic cell death induced by TrkA receptor activation in human glioblastoma cells. J Neurochem 103(1):259–275

    CAS  PubMed  Google Scholar 

  192. Ravikumar B, Berger Z, Vacher C, O’Kane CJ, Rubinsztein DC (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15(7):1209–1216

    Article  CAS  PubMed  Google Scholar 

  193. Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14(3):548–558

    Article  CAS  PubMed  Google Scholar 

  194. Brancolini C (2008) Inhibitors of the ubiquitin-proteasome system and the cell death machinery: how many pathways are activated? Curr Mol Pharmacol 1(1):24–37

    Article  CAS  PubMed  Google Scholar 

  195. Zhang X, Li W, Wang C, Leng X, Lian S, Feng J et al (2014) Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. Mol Cell Biochem 385(1–2):265–275

    Article  CAS  PubMed  Google Scholar 

  196. Wan H-Y, Chen J-L, Zhu X, Liu L, Wang J, Zhu X-M (2018) Titania-coated gold nano-bipyramids for blocking autophagy flux and sensitizing cancer cells to proteasome inhibitor-induced death. Adv Sci 5(3):1700585

    Article  Google Scholar 

  197. Strik H, Deininger M, Streffer J, Grote E, Wickboldt J, Dichgans J et al (1999) BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry 67(6):763–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhang Y, Zhu X, Hou K, Zhao J, Han Z, Zhang X (2015) Mcl-1 downregulation sensitizes glioma to bortezomib-induced apoptosis. Oncol Rep 33(5):2277–2284

    Article  CAS  PubMed  Google Scholar 

  199. Lavon I, Fuchs D, Zrihan D, Efroni G, Zelikovitch B, Fellig Y, Siegal T (2007) Novel mechanism whereby nuclear factor b mediates DNA damage repair through regulation of O6-methylguanine-DNA-methyltransferase. Cancer Res 67(18):8952–8959

    Article  CAS  PubMed  Google Scholar 

  200. Preusser M, de Ribaupierre S, Wöhrer A, Erridge SC, Hegi M, Weller M, Stupp R (2011) Current concepts and management of glioblastoma. Ann Neurol 70(1):9–21

    Article  PubMed  Google Scholar 

  201. Raychaudhuri B, Han Y, Lu T, Vogelbaum MA (2007) Aberrant constitutive activation of nuclear factor κB in glioblastoma multiforme drives invasive phenotype. J Neuro-Oncol 85(1):39–47

    Article  CAS  Google Scholar 

  202. Bredel M, Scholtens DM, Yadav AK, Alvarez AA, Renfrow JJ, Chandler JP et al (2011) NFKBIA deletion in glioblastomas. N Engl J Med 364(7):627–637

    Article  CAS  PubMed  Google Scholar 

  203. Goldberg AL (2016) Probing the proteasome. Trends Cell Biol 26(11):792–794

    Article  Google Scholar 

  204. Thibaudeau TA, Smith DM (2019) A practical review of proteasome pharmacology. Pharmacol Rev 71(2):170–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Di K, Lloyd GK, Abraham V, MacLaren A, Burrows FJ, Desjardins A et al (2016) Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier. Neuro-Oncology 18(6):840–848

    Article  CAS  PubMed  Google Scholar 

  206. Vlachostergios PJ, Voutsadakis IA, Papandreou CN (2013) The shaping of invasive glioma phenotype by the ubiquitin–proteasome system. Cell Commun Adhes 20(5):87–92

    Article  CAS  PubMed  Google Scholar 

  207. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31(3):326–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Pettersson M, Crews CM (2019) PROteolysis TArgeting Chimeras (PROTACs) — past, present and future. Drug Discov Today Technol 31:15–27

    Article  PubMed  PubMed Central  Google Scholar 

  209. Maniaci C, Hughes SJ, Testa A, Chen W, Lamont DJ, Rocha S et al (2017) Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun 8(1):830

    Article  PubMed  PubMed Central  Google Scholar 

  210. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S et al (2018) Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol 25(1):78–87.e5

    Article  CAS  PubMed  Google Scholar 

  211. Sun Y, Zhao X, Ding N, Gao H, Wu Y, Yang Y et al (2018) PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B cell malignancies. Cell Res 28(7):779–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gu S, Cui D, Chen X, Xiong X, Zhao Y (2018) PROTACs: an emerging targeting technique for protein degradation in drug discovery. BioEssays 40(4):1700247

    Article  Google Scholar 

  213. Okuhira K, Demizu Y, Hattori T, Ohoka N, Shibata N, Nishimaki-Mogami T et al (2013) Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci 104(11):1492–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Robb CM, Contreras JI, Kour S, Taylor MA, Abid M, Sonawane YA et al (2017) Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun 53(54):7577–7580

    Article  CAS  Google Scholar 

  215. Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H et al (2018) Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol 1(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  216. Sun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG et al (2018) BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia 32(2):343–352

    Article  CAS  PubMed  Google Scholar 

  217. Zhang C, Han X-R, Yang X, Jiang B, Liu J, Xiong Y, Jin J (2018) Proteolysis Targeting Chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur J Med Chem 151:304–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zhang X, Lee HC, Shirazi F, Baladandayuthapani V, Lin H, Kuiatse I et al (2018) Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia 32(10):2224–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hines J, Gough JD, Corson TW, Crews CM (2013) Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc Natl Acad Sci 110(22):8942–8947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2015) Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348(6241):1376–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kang CH, Lee DH, Lee CO, Du Ha J, Park CH, Hwang JY (2018) Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem Biophys Res Commun 505(2):542–547

    Article  CAS  PubMed  Google Scholar 

  222. Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP et al (2018) The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol 25(1):67–77.e3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The named author was the only person involved in the development of this review.

Corresponding author

Correspondence to Semer Maksoud.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksoud, S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 58, 3252–3269 (2021). https://doi.org/10.1007/s12035-021-02339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02339-4

Keywords

Navigation