Skip to main content
Log in

Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Autophagy is an evolutionarily conserved mechanism contributing to cell survival under stress conditions including nutrient and growth factor deprivation. Connections and cross-talk between cell death mechanisms and autophagy is under investigation. Here, we describe Atg3, an essential regulatory component of autophagosome biogenesis, as a new substrate of caspase-8 during receptor-mediated cell death. Both, tumor necrosis factor α and tumor necrosis factor-related apoptosis inducing ligand induced cell death was accompanied by Atg3 cleavage and this event was inhibited by a pan-caspase inhibitor (zVAD) or a caspase-8-specific inhibitor (zIETD). Indeed, caspase-8 overexpression led to Atg3 degradation and this event depended on caspase-8 enzymatic activity. Mutation of the caspase-8 cleavage site on Atg3 abolished its cleavage both in vitro and in vivo, demonstrating that Atg3 was a direct target of caspase-8. Autophagy was inactive during apoptosis and blockage of caspases or overexpression of a non-cleavable Atg3 protein reestablished autophagic activity upon death receptor stimulation. In this system, autophagy was important for cell survival since inhibition of autophagy increased cell death. Therefore, Atg3 provides a novel link between apoptosis and autophagy during receptor-activated cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LC3:

Microtubule-associated protein 1 (MAP1) light chain 3

PI3K:

Phosphatidylinositol 3-kinase

zVAD-fmk:

Benzyloxycarbonyl-valyl-alanyl-aspartic-acid (O-methyl)-fluoromethylketone

CHX:

Cycloheximide

TNF:

Tumor necrosis factor

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

FADD:

Fas-associated protein with death domain

TRADD:

Tumor necrosis factor receptor type 1-associated death domain protein

PE:

Phosphatidylethanolamine

HEK293T:

Human embryonic kidney cells

References

  1. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  PubMed  CAS  Google Scholar 

  2. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Google Scholar 

  3. Moreau K, Luo S, Rubinsztein DC (2010) Cytoprotective roles for autophagy. Curr Opin Cell Biol 22:206–211

    Article  PubMed  CAS  Google Scholar 

  4. Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Bio 78:217–245

    Article  CAS  Google Scholar 

  5. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  PubMed  CAS  Google Scholar 

  6. Kourtis N, Tavernarakis N (2009) Autophagy and cell death in model organisms. Cell Death Differ 16:21–30

    Article  PubMed  CAS  Google Scholar 

  7. Hengartner MO (2000) Biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  8. Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118:265–267

    Article  PubMed  CAS  Google Scholar 

  9. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  10. Yousefi S, Perozzo R, Schmid I et al (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    Article  PubMed  CAS  Google Scholar 

  11. Betin VMS, Lane JD (2009) Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 122:2554–2566

    Article  PubMed  CAS  Google Scholar 

  12. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  PubMed  CAS  Google Scholar 

  13. Maiuri MC, Le Toumelin G, Criollo A et al (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26:2527–2539

    Article  PubMed  CAS  Google Scholar 

  14. Ciechomska IA, Goemans GC, Skepper JN, Tolkovsky AM (2009) Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function. Oncogene 28:2128–2141

    Article  PubMed  CAS  Google Scholar 

  15. Cho DH, Jo YK, Hwang JJ et al (2009) Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 274:95–100

    Article  PubMed  CAS  Google Scholar 

  16. Luo S, Rubinsztein DC (2010) Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17:268–277

    Article  PubMed  CAS  Google Scholar 

  17. Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I et al (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1:18

    Article  Google Scholar 

  18. Djavaheri-Mergny M, Maiuri MC, Kroemer G (2010) Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29:1717–1719

    Article  PubMed  CAS  Google Scholar 

  19. Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H, Chen Q (2010) Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 1:468–477

    Article  PubMed  CAS  Google Scholar 

  20. Dix MM, Simon GM, Cravatt BF (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679–691

    Article  PubMed  CAS  Google Scholar 

  21. Norman JM, Cohen GM, Bampton ET (2010) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6:1042–1056

    Article  PubMed  CAS  Google Scholar 

  22. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  PubMed  CAS  Google Scholar 

  23. Ichimura Y, Kirisako T, Takao T et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  PubMed  CAS  Google Scholar 

  24. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302

    Article  PubMed  CAS  Google Scholar 

  25. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    Article  PubMed  CAS  Google Scholar 

  26. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  PubMed  CAS  Google Scholar 

  27. Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T et al (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762–4775

    Article  PubMed  CAS  Google Scholar 

  28. Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D, Ni J, Núñez G (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 274:14560–14567

    Article  PubMed  CAS  Google Scholar 

  29. Kosar A, Sesen M, Oral O, Itah Z, Gozuacik D (2011) Bubbly cavitating flow generation and investigation of its erosional nature for biomedical applications. IEEE Trans Biomed Eng 58:1337–1346

    Article  PubMed  Google Scholar 

  30. Korkmaz G, le Sage C, Tekirdag KA, Agami R, Gozuacik D (2012) miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8:165–176

    Article  PubMed  CAS  Google Scholar 

  31. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  32. McDevitt H, Munson S, Ettinger R, Wu A (2002) Multiple roles for tumor necrosis factor-alpha and lymphotoxin alpha/beta in immunity and autoimmunity. Arthritis Res 4:141–152

    Article  Google Scholar 

  33. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  34. Klionsky DJ (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed  CAS  Google Scholar 

  35. Zhang J, Cado D, Chen A, Kabra N, Winoto A (1998) Fas-mediated apoptosis and activationinduced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392:296–300

    Article  PubMed  CAS  Google Scholar 

  36. Salmena L, Lemmers B, Hakem A et al (2003) Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 17:883–895

    Article  PubMed  CAS  Google Scholar 

  37. Chau H, Wong V, Chen NJ et al (2005) Cellular FLICE-inhibitory protein is required for T cell survival and cycling. J Exp Med 202:405–413

    Article  PubMed  CAS  Google Scholar 

  38. Zhang N, He YW (2005) An essential role for c-FLIP in the efficient development of mature T lymphocytes. J Exp Med 202:395–404

    Article  PubMed  CAS  Google Scholar 

  39. Newton K, Harris A, Bath M, Smith K, Strasser A (1998) A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 17:706–718

    Article  PubMed  CAS  Google Scholar 

  40. Walsh C, Wen B, Chinnaiyan A et al (1998) A role for FADD in T cell activation and development. Immunity 8:439–449

    Article  PubMed  CAS  Google Scholar 

  41. Zornig M, Hueber AO, Evan G (1998) p53-dependent impairment of T-cell proliferation in FADD dominant-negative transgenic mice. Curr Biol 8:467–470

    Article  PubMed  CAS  Google Scholar 

  42. Beisner DR, Chu IH, Arechiga AF, Hedrick SM, Walsh CM (2003) The requirements for fasassociated death domain signaling in mature T cell activation and survival. J Immunol 171:247–256

    PubMed  CAS  Google Scholar 

  43. Ch’en IL, Beisner DR, Degterev A et al (2008) Antigen mediated T cell expansion regulated by parallel pathways of death. Proc Natl Acad Sci USA 105:17463–17468

    Article  PubMed  Google Scholar 

  44. Bell BD, Leverrier S, Weist BM et al (2008) FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci USA 105:16677–16682

    Article  PubMed  CAS  Google Scholar 

  45. Gozuacik D, Bialik S, Raveh T, Mitou G, Shohat G, Sabanay H, Mizushima N, Yoshimori T, Kimchi A (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15:1875–1886

    Article  PubMed  CAS  Google Scholar 

  46. Criollo A, Chereau F, Malik SA et al (2012) Autophagy is required for the activation of NFκB. Cell Cycle 11:194–199

    Article  PubMed  CAS  Google Scholar 

  47. Hou W, Han J, Lu C, Goldstein LA, Rabinowich H (2010) Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6:891–900

    Article  PubMed  CAS  Google Scholar 

  48. Kovacs JR, Li C, Yang Q, Li G, Garcia IG, Ju S, Roodman DG, Windle JJ, Zhang X, Lu B (2012) Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 19:144–152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

pcDNA-HA-caspase-8 and pcDNA3-caspase-8-C377S-HA (mutant caspase-8) plasmids were kindly provided by Nesrin Ozoren and Gabriel Nunez. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) 1001 grant (Project No. 107T153), EMBO Strategical Development and Installations Grant (EMBO-SDIG, Project No. 1449) and Sabanci University. D.G. is a recipient of Turkish Academy of Sciences (TUBA) GEBIP Award. O. O. and D. O. A. are recipients of TUBITAK-2218 postdoctoral scholarship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devrim Gozuacik.

Additional information

Ozlem Oral and Devrim Oz-Arslan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 382 kb)

Supplementary material 2 (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oral, O., Oz-Arslan, D., Itah, Z. et al. Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis 17, 810–820 (2012). https://doi.org/10.1007/s10495-012-0735-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0735-0

Keywords

Navigation