Skip to main content

Advertisement

Log in

2021 WHO classification of tumours of the central nervous system: a review for the neuroradiologist

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

The fifth edition of the World Health Organization Classification of Tumours of the Central Nervous System (WHO CNS5) published in 2021 builds on the 2016 edition and incorporates output from the Consortium to Inform Molecular and Practical Approaches to CNS Tumour Taxonomy (cIMPACT-NOW). WHO CNS5 introduces fundamental changes to brain tumour classification through the introduction of new tumour families and types, especially in the paediatric population, and a revision of diagnostic criteria for some of the existing neoplasms. Neuroradiologists are central to brain tumour diagnostics, and it is therefore essential that they become familiar with the key updates. This review aims to summarise the most relevant updates for the neuroradiologist and, where available, discuss the known radiophenotypes of various new tumour types to allow for increased accuracy of language and diagnosis. Of particular importance, WHO CNS5 places greater emphasis on organising tumours by molecular type to reflect biology, as well as to allow for better planning of treatment. The principal updates in adult tumours concern the molecular definition of glioblastoma, restructuring of diffuse gliomas, and the introduction of several new tumour types. The updates to the paediatric classification are protean, ranging from the introduction of new types to establishing separate tumour families for paediatric-type gliomas. This review summarises the most significant revisions and captures the rationale and radiological implications for the major updates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Louis DN, Wesseling P, Aldape K, Brat DJ, Capper D, Cree IA et al (2020) cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 30(4):844–856

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO Classification of Tumours Editorial Board. Central nervous system tumours [Internet]. Lyon (France): International Agency for Research on Cancer; 2021 [cited 2022 01 23]. (WHO classification of tumours series, 5th ed.; vol. 6). Available from: https://tumourclassification.iarc.who.int/chapters/45

  3. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555(7697):469–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Priesterbach-Ackley LP, Boldt HB, Petersen JK, Bervoets N, Scheie D, Ulhøi BP et al (2020) Brain tumour diagnostics using a DNA methylation-based classifier as a diagnostic support tool. Neuropathol Appl Neurobiol 46(5):478–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pickles JC, Stone TJ, Jacques TS (2020) Methylation-based algorithms for diagnosis: experience from neuro-oncology. J Pathol 250(5):510–517

    Article  PubMed  Google Scholar 

  7. Pickles JC, Fairchild AR, Stone TJ, Brownlee L, Merve A, Yasin SA et al (2020) DNA methylation-based profiling for paediatric CNS tumour diagnosis and treatment: a population-based study. Lancet Child Adolesc Health 4(2):121–130

    Article  CAS  PubMed  Google Scholar 

  8. Bruford EA, Antonescu CR, Carroll AJ, Chinnaiyan A, Cree IA, Cross NCP et al (2021) HUGO Gene Nomenclature Committee (HGNC) recommendations for the designation of gene fusions. Leukemia 35(11):3040–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J et al (2016) HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 37(6):564–569

    Article  Google Scholar 

  10. Louis DN, Perry A, Burger P, Ellison DW, Reifenberger G, von Deimling A et al (2014) International Society Of Neuropathology-Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24(5):429–435

    Article  PubMed  PubMed Central  Google Scholar 

  11. Louis DN, Wesseling P, Brandner S, Brat DJ, Ellison DW, Giangaspero F et al (2020) Data sets for the reporting of tumors of the central nervous system: recommendations from the international collaboration on cancer reporting. Arch Pathol Lab Med 144(2):196–206

    Article  PubMed  Google Scholar 

  12. Brat DJ, Aldape K, Colman H, Figrarella-Branger D, Fuller GN, Giannini C et al (2020) cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139(3):603–608

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shirahata M, Ono T, Stichel D, Schrimpf D, Reuss DE, Sahm F et al (2018) Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol 136(1):153–166

    Article  CAS  PubMed  Google Scholar 

  14. Patel SH, Poisson LM, Brat DJ, Zhou Y, Cooper L, Snuderl M et al (2017) T2-FLAIR Mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin Cancer Res 23(20):6078–6085

    Article  CAS  PubMed  Google Scholar 

  15. van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJ, Jaeckle K, Junck L et al (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12(6):583–593

    Article  PubMed  Google Scholar 

  16. Zhao K, Sun G, Wang Q, Xue Z, Liu G, Xia Y et al (2021) The diagnostic value of conventional MRI and CT features in the identification of the IDH1-mutant and 1p/19q co-deletion in WHO grade II gliomas. Acad Radiol 28(7):e189–e198

    Article  PubMed  Google Scholar 

  17. Juratli TA, Tummala SS, Riedl A, Daubner D, Hennig S, Penson T et al (2019) Radiographic assessment of contrast enhancement and T2/FLAIR mismatch sign in lower grade gliomas: correlation with molecular groups. J Neurooncol 141(2):327–335

    Article  CAS  PubMed  Google Scholar 

  18. Zetterling M, Berhane L, Alafuzoff I, Jakola AS, Smits A (2017) Prognostic markers for survival in patients with oligodendroglial tumors; a single-institution review of 214 cases. PLoS ONE 12(11):e0188419

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smits M (2016) Imaging of oligodendroglioma. Br J Radiol 89(1060):20150857

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wijnenga MMJ, French PJ, Dubbink HJ, Dinjens WNM, Atmodimedjo PN, Kros JM et al (2018) The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. Neuro Oncol 20(1):103–112

    Article  CAS  PubMed  Google Scholar 

  21. Smits M, van den Bent MJ (2017) Imaging correlates of adult glioma genotypes. Radiology 284(2):316–331

    Article  PubMed  Google Scholar 

  22. Khalid L, Carone M, Dumrongpisutikul N, Intrapiromkul J, Bonekamp D, Barker PB et al (2012) Imaging characteristics of oligodendrogliomas that predict grade. AJNR Am J Neuroradiol 33(5):852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suchorska B, Schüller U, Biczok A, Lenski M, Albert NL, Giese A et al (2019) Contrast enhancement is a prognostic factor in IDH1/2 mutant, but not in wild-type WHO grade II/III glioma as confirmed by machine learning. Eur J Cancer 107:15–27

    Article  CAS  PubMed  Google Scholar 

  24. Roux A, Tauziede-Espariat A, Zanello M, Peeters S, Zah-Bi G, Parraga E et al (2020) Imaging growth as a predictor of grade of malignancy and aggressiveness of IDH-mutant and 1p/19q-codeleted oligodendrogliomas in adults. Neuro Oncol 22(7):993–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Latysheva A, Emblem KE, Brandal P, Vik-Mo EO, Pahnke J, Røysland K et al (2019) Dynamic susceptibility contrast and diffusion MR imaging identify oligodendroglioma as defined by the 2016 WHO classification for brain tumors: histogram analysis approach. Neuroradiology 61(5):545–555

    Article  PubMed  Google Scholar 

  26. Rock K, McArdle O, Forde P, Dunne M, Fitzpatrick D, O’Neill B et al (2012) A clinical review of treatment outcomes in glioblastoma multiforme–the validation in a non-trial population of the results of a randomised Phase III clinical trial: has a more radical approach improved survival? Br J Radiol 85(1017):e729–e733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hasselblatt M, Jaber M, Reuss D, Grauer O, Bibo A, Terwey S et al (2018) Diffuse astrocytoma, IDH-wildtype: a dissolving diagnosis. J Neuropathol Exp Neurol 77(6):422–425

    Article  CAS  PubMed  Google Scholar 

  28. Reuss DE, Kratz A, Sahm F, Capper D, Schrimpf D, Koelsche C et al (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130(3):407–417

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47(5):458–468

    Article  CAS  PubMed  Google Scholar 

  30. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stichel D, Ebrahimi A, Reuss D, Schrimpf D, Ono T, Shirahata M et al (2018) Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol 136(5):793–803

    Article  PubMed  Google Scholar 

  32. Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB et al (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV.” Acta Neuropathol 136(5):805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tesileanu CMS, Dirven L, Wijnenga MMJ, Koekkoek JAF, Vincent AJPE, Dubbink HJ et al (2020) Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro Oncol 22(4):515–523

    Article  CAS  PubMed  Google Scholar 

  34. Maynard J, Okuchi S, Wastling S, Busaidi AA, Almossawi O, Mbatha W et al (2020) World Health Organization grade II/III glioma molecular status: prediction by MRI morphologic features and apparent diffusion coefficient. Radiology 296(1):111–121

    Article  PubMed  Google Scholar 

  35. Sievers P, Sill M, Schrimpf D, Stichel D, Reuss DE, Sturm D et al (2021) A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR. Neuro Oncol 23(1):34–43

    Article  CAS  PubMed  Google Scholar 

  36. Roux A, Pallud J, Saffroy R, Edjlali-Goujon M, Debily MA, Boddaert N et al (2020) High-grade gliomas in adolescents and young adults highlight histomolecular differences from their adult and pediatric counterparts. Neuro Oncol 22(8):1190–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meyronet D, Esteban-Mader M, Bonnet C, Joly MO, Uro-Coste E, Amiel-Benouaich A et al (2017) Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol 19(8):1127–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Broniscer A, Hwang SN, Chamdine O, Lin T, Pounds S, Onar-Thomas A et al (2018) Bithalamic gliomas may be molecularly distinct from their unilateral high-grade counterparts. Brain Pathol (Zurich, Switzerland) 28(1):112–120

    Article  CAS  Google Scholar 

  39. Mondal G, Lee JC, Ravindranathan A, Villanueva-Meyer JE, Tran QT, Allen SJ et al (2020) Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathol 139(6):1071–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leach JL, Roebker J, Schafer A, Baugh J, Chaney B, Fuller C et al (2020) MR imaging features of diffuse intrinsic pontine glioma and relationship to overall survival: report from the International DIPG Registry. Neuro Oncol 22(11):1647–1657

    Article  PubMed  PubMed Central  Google Scholar 

  41. Löbel U, Sedlacik J, Reddick WE, Kocak M, Ji Q, Broniscer A et al (2011) Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 32(2):315–322

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32(4):520–37.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen H, Hu W, He H, Yang Y, Wen G, Lv X (2019) Noninvasive assessment of H3 K27M mutational status in diffuse midline gliomas by using apparent diffusion coefficient measurements. Eur J Radiol 114:152–159

    Article  PubMed  Google Scholar 

  44. Kathrani N, Chauhan RS, Kotwal A, Kulanthaivelu K, Bhat MD, Saini J, Prasad C, Chakrabarti D, Santosh V, Uppar AM, Srinivas D (2022) Diffusion and perfusion imaging biomarkers of H3 K27M mutation status in diffuse midline gliomas. Neuroradiology 64(8):1519–1528

  45. Aboian MS, Tong E, Solomon DA, Kline C, Gautam A, Vardapetyan A et al (2019) Diffusion characteristics of pediatric diffuse midline gliomas with histone H3–K27M mutation using apparent diffusion coefficient histogram analysis. AJNR Am J Neuroradiol 40(11):1804–1810

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gilbert AR, Zaky W, Gokden M, Fuller CE, Ocal E, Leeds NE et al (2018) Extending the neuroanatomic territory of diffuse midline glioma, K27M mutant: pineal region origin. Pediatr Neurosurg 53(1):59–63

    Article  PubMed  Google Scholar 

  47. Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ et al (2016) Diffuse midline gliomas with histone H3–K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26(5):569–580

    Article  CAS  PubMed  Google Scholar 

  48. Yoshimoto K, Hatae R, Sangatsuda Y, Suzuki SO, Hata N, Akagi Y et al (2017) Prevalence and clinicopathological features of H3.3 G34-mutant high-grade gliomas: a retrospective study of 411 consecutive glioma cases in a single institution. Brain Tumor Pathol 34(3):103–12

    Article  PubMed  Google Scholar 

  49. Korshunov A, Capper D, Reuss D, Schrimpf D, Ryzhova M, Hovestadt V et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131(1):137–146

    Article  CAS  PubMed  Google Scholar 

  50. Vettermann FJ, Felsberg J, Reifenberger G, Hasselblatt M, Forbrig R, Berding G et al (2018) Characterization of diffuse gliomas with histone H3–G34 mutation by MRI and dynamic 18F-FET PET. Clin Nucl Med 43(12):895–898

    Article  PubMed  Google Scholar 

  51. Picart T, Barritault M, Poncet D, Berner L-P, Izquierdo C, Tabouret E et al (2021) Characteristics of diffuse hemispheric gliomas, H3 G34-mutant in adults. Neurooncol Adv 3(1):vdab061

    PubMed  PubMed Central  Google Scholar 

  52. Korshunov A, Schrimpf D, Ryzhova M, Sturm D, Chavez L, Hovestadt V et al (2017) H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 134(3):507–516

    Article  CAS  PubMed  Google Scholar 

  53. Gonçalves FG, Viaene AN, Vossough A (2021) Advanced magnetic resonance imaging in pediatric glioblastomas. Front Neurol 12:733323

  54. Tauziède-Espariat A, Debily MA, Castel D, Grill J, Puget S, Roux A et al (2020) The pediatric supratentorial MYCN-amplified high-grade gliomas methylation class presents the same radiological, histopathological and molecular features as their pontine counterparts. Acta Neuropathol Commun 8(1):104

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tauziède-Espariat A, Debily MA, Castel D, Grill J, Puget S, Sabel M et al (2019) An integrative radiological, histopathological and molecular analysis of pediatric pontine histone-wildtype glioma with MYCN amplification (HGG-MYCN). Acta Neuropathol Commun 7(1):87

    Article  PubMed  Google Scholar 

  56. Recurrent MET (2016) fusion genes represent a drug target in pediatric glioblastoma. Nat Med 22(11):1314–1320

    Article  Google Scholar 

  57. Clarke M, Mackay A, Ismer B, Pickles JC, Tatevossian RG, Newman S et al (2020) Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov 10(7):942–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guerreiro Stucklin AS, Ryall S, Fukuoka K, Zapotocky M, Lassaletta A, Li C et al (2019) Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 10(1):4343

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ng A, Levy ML, Malicki DM, Crawford JR (2019) Unusual high-grade and low-grade glioma in an infant with PPP1CB-ALK gene fusion. BMJ Case Rep. 12(2):e228248

    Article  PubMed  PubMed Central  Google Scholar 

  60. Valera ET, Neder L, Queiroz RG, Santos AC, Sousa GR, Oliveira RS et al (2020) Perinatal complex low- and high-grade glial tumor harboring a novel GIGYF2-ALK fusion. Pediatr Blood Cancer 67(1):e28015

    Article  PubMed  Google Scholar 

  61. Olsen TK, Panagopoulos I, Meling TR, Micci F, Gorunova L, Thorsen J et al (2015) Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity? Neuro Oncol 17(10):1365–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL et al (2015) Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 10):x1–x36

    Article  PubMed  Google Scholar 

  63. Ryall S, Tabori U, Hawkins C (2020) Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun 8(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bag AK, Chiang J, Patay Z (2021) Radiohistogenomics of pediatric low-grade neuroepithelial tumors. Neuroradiology 63(8):1185–1213

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ryall S, Zapotocky M, Fukuoka K, Nobre L, Guerreiro Stucklin A, Bennett J et al (2020) Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell 37(4):569–83.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wefers AK, Stichel D, Schrimpf D, Coras R, Pages M, Tauziède-Espariat A et al (2020) Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathol 139(1):193–209

    Article  PubMed  Google Scholar 

  67. Tatevossian RG, Tang B, Dalton J, Forshew T, Lawson AR, Ma J et al (2010) MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathol 120(6):731–743

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6):602–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ramkissoon LA, Horowitz PM, Craig JM, Ramkissoon SH, Rich BE, Schumacher SE et al (2013) Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci U S A 110(20):8188–8193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Slegers RJ, Blumcke I (2020) Low-grade developmental and epilepsy associated brain tumors: a critical update 2020. Acta Neuropathol Commun 8(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  71. Blumcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG et al (2017) Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med 377(17):1648–1656

    Article  PubMed  Google Scholar 

  72. Schramm J, Luyken C, Urbach H, Fimmers R, Blümcke I (2004) Evidence for a clinically distinct new subtype of grade II astrocytomas in patients with long-term epilepsy. Neurosurgery 55(2):340–7 (discussion 7-8)

    Article  PubMed  Google Scholar 

  73. Chiang J, Harreld JH, Tinkle CL, Moreira DC, Li X, Acharya S et al (2019) A single-center study of the clinicopathologic correlates of gliomas with a MYB or MYBL1 alteration. Acta Neuropathol 138(6):1091–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Blumcke I, Aronica E, Urbach H, Alexopoulos A, Gonzalez-Martinez JA (2014) A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors. Acta Neuropathol 128(1):39–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huse JT, Snuderl M, Jones DT, Brathwaite CD, Altman N, Lavi E et al (2017) Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway. Acta Neuropathol 133(3):417–429

    Article  CAS  PubMed  Google Scholar 

  76. Johnson DR, Giannini C, Jenkins RB, Kim DK, Kaufmann TJ (2019) Plenty of calcification: imaging characterization of polymorphous low-grade neuroepithelial tumor of the young. Neuroradiology 61(11):1327–1332

    Article  PubMed  Google Scholar 

  77. Chen Y, Tian T, Guo X, Zhang F, Fan M, Jin H et al (2020) Polymorphous low-grade neuroepithelial tumor of the young: case report and review focus on the radiological features and genetic alterations. BMC Neurol 20(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Isler C, Erturk Cetin O, Ugurlar D, Ozkara C, Comunoglu N, Kizilkilic O et al (2018) Dysembryoplastic neuroepithelial tumours: clinical, radiological, pathological features and outcome. Br J Neurosurg 32(4):436–441

    Article  PubMed  Google Scholar 

  79. Ellison DW, Hawkins C, Jones DTW, Onar-Thomas A, Pfister SM, Reifenberger G et al (2019) cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAF(V600E) mutation. Acta Neuropathol 137(4):683–687

    Article  CAS  PubMed  Google Scholar 

  80. Bandopadhayay P, Ramkissoon LA, Jain P, Bergthold G, Wala J, Zeid R et al (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48(3):273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marburger T, Prayson R (2011) Angiocentric glioma: a clinicopathologic review of 5 tumors with identification of associated cortical dysplasia. Arch Pathol Lab Med 135(8):1037–1041

    Article  PubMed  Google Scholar 

  82. Covington DB, Rosenblum MK, Brathwaite CD, Sandberg DI (2009) Angiocentric glioma-like tumor of the midbrain. Pediatr Neurosurg 45(6):429–433

    Article  PubMed  Google Scholar 

  83. Weaver KJ, Crawford LM, Bennett JA, Rivera-Zengotita ML, Pincus DW (2017) Brainstem angiocentric glioma: report of 2 cases. J Neurosurg Pediatr 20(4):347–351

    Article  PubMed  Google Scholar 

  84. Chan E, Bollen AW, Sirohi D, Van Ziffle J, Grenert JP, Kline CN et al (2017) Angiocentric glioma with MYB-QKI fusion located in the brainstem, rather than cerebral cortex. Acta Neuropathol 134(4):671–673

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang M, Tihan T, Rojiani AM, Bodhireddy SR, Prayson RA, Iacuone JJ et al (2005) Monomorphous angiocentric glioma: a distinctive epileptogenic neoplasm with features of infiltrating astrocytoma and ependymoma. J Neuropathol Exp Neurol 64(10):875–881

    Article  PubMed  Google Scholar 

  86. Lellouch-Tubiana A, Boddaert N, Bourgeois M, Fohlen M, Jouvet A, Delalande O et al (2005) Angiocentric neuroepithelial tumor (ANET): a new epilepsy-related clinicopathological entity with distinctive MRI. Brain Pathol 15(4):281–286

    Article  PubMed  Google Scholar 

  87. Ni HC, Chen SY, Chen L, Lu DH, Fu YJ, Piao YS (2015) Angiocentric glioma: a report of nine new cases, including four with atypical histological features. Neuropathol Appl Neurobiol 41(3):333–346

    Article  CAS  PubMed  Google Scholar 

  88. Koral K, Koral KM, Sklar F (2012) Angiocentric glioma in a 4-year-old boy: imaging characteristics and review of the literature. Clin Imaging 36(1):61–64

    Article  PubMed  Google Scholar 

  89. Ampie L, Choy W, DiDomenico JD, Lamano JB, Williams CK, Kesavabhotla K et al (2016) Clinical attributes and surgical outcomes of angiocentric gliomas. J Clin Neurosci 28:117–122

    Article  PubMed  Google Scholar 

  90. Whitehead MT, Vezina G (2015) MR spectroscopic profile of an angiocentric glioma. Anticancer Res 35(11):6267–6270

    CAS  PubMed  Google Scholar 

  91. Shakur SF, McGirt MJ, Johnson MW, Burger PC, Ahn E, Carson BS et al (2009) Angiocentric glioma: a case series. J Neurosurg Pediatr 3(3):197–202

    Article  PubMed  PubMed Central  Google Scholar 

  92. Reinhardt A, Stichel D, Schrimpf D, Sahm F, Korshunov A, Reuss DE et al (2018) Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol 136(2):273–291

    Article  CAS  PubMed  Google Scholar 

  93. Reinhardt A, Stichel D, Schrimpf D, Koelsche C, Wefers AK, Ebrahimi A et al (2019) Tumors diagnosed as cerebellar glioblastoma comprise distinct molecular entities. Acta Neuropathol Commun 7(1):163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bender K, Perez E, Chirica M, Onken J, Kahn J, Brenner W et al (2021) High-grade astrocytoma with piloid features (HGAP): the Charité experience with a new central nervous system tumor entity. J Neurooncol 153(1):109–120

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gareton A, Tauziède-Espariat A, Dangouloff-Ros V, Roux A, Saffroy R, Castel D et al (2020) The histomolecular criteria established for adult anaplastic pilocytic astrocytoma are not applicable to the pediatric population. Acta Neuropathol 139(2):287–303

    Article  CAS  PubMed  Google Scholar 

  96. Fiechter M, Hewer E, Knecht U, Wiest R, Beck J, Raabe A et al (2016) Adult anaplastic pilocytic astrocytoma - a diagnostic challenge? A case series and literature review. Clin Neurol Neurosurg 147:98–104

    Article  PubMed  Google Scholar 

  97. Brat DJ, Hirose Y, Cohen KJ, Feuerstein BG, Burger PC (2000) Astroblastoma: clinicopathologic features and chromosomal abnormalities defined by comparative genomic hybridization. Brain Pathol 10(3):342–352

    Article  CAS  PubMed  Google Scholar 

  98. Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen W, Soon YY, Pratiseyo PD, Sutanto R, Hendriansyah L, Kuick CH et al (2020) Central nervous system neuroepithelial tumors with MN1-alteration: an individual patient data meta-analysis of 73 cases. Brain Tumor Pathol 37(4):145–153

    Article  CAS  PubMed  Google Scholar 

  100. Mhatre R, Sugur HS, Nandeesh BN, Chickabasaviah Y, Saini J, Santosh V (2019) MN1 rearrangement in astroblastoma: study of eight cases and review of literature. Brain Tumor Pathol 36(3):112–120

    Article  CAS  PubMed  Google Scholar 

  101. Lehman NL, Usubalieva A, Lin T, Allen SJ, Tran QT, Mobley BC et al (2019) Genomic analysis demonstrates that histologically-defined astroblastomas are molecularly heterogeneous and that tumors with MN1 rearrangement exhibit the most favorable prognosis. Acta Neuropathol Commun 7(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  102. Deng MY, Sill M, Sturm D, Stichel D, Witt H, Ecker J et al (2020) Diffuse glioneuronal tumour with oligodendroglioma-like features and nuclear clusters (DGONC) – a molecularly defined glioneuronal CNS tumour class displaying recurrent monosomy 14. Neuropathol Appl Neurobiol 46(5):422–430

    Article  CAS  PubMed  Google Scholar 

  103. Huse JT, Edgar M, Halliday J, Mikolaenko I, Lavi E, Rosenblum MK (2013) Multinodular and vacuolating neuronal tumors of the cerebrum: 10 cases of a distinctive seizure-associated lesion. Brain Pathol 23(5):515–524

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yamaguchi M, Komori T, Nakata Y, Yagishita A, Morino M, Isozaki E (2016) Multinodular and vacuolating neuronal tumor affecting amygdala and hippocampus: A quasi-tumor? Pathol Int 66(1):34–41

    Article  CAS  PubMed  Google Scholar 

  105. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R et al (2014) Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fukushima S, Yoshida A, Narita Y, Arita H, Ohno M, Miyakita Y et al (2015) Multinodular and vacuolating neuronal tumor of the cerebrum. Brain Tumor Pathol 32(2):131–136

    Article  CAS  PubMed  Google Scholar 

  107. Buffa GB, Chaves H, Serra MM, Stefanoff NI, Gagliardo AS, Yañez P (2020) Multinodular and vacuolating neuronal tumor of the cerebrum (MVNT): a case series and review of the literature. J Neuroradiol 47(3):216–220

    Article  PubMed  Google Scholar 

  108. Lecler A, Chauvet D, Biassette HA, Savatovsky J (2018) Multiparametric imaging improves confidence in the diagnosis of multinodular and vacuolating neuronal tumor of the cerebrum. Am J Neuroradiol 39(2):E32–E33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nunes RH, Hsu CC, da Rocha AJ, do Amaral LLF, Godoy LFS, Watkins TW et al (2017) 2017 Multinodular and vacuolating neuronal tumor of the cerebrum: a new “leave me alone” lesion with a characteristic imaging pattern. Am J Neuroradiol 38(10):1899–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alsufayan R, Alcaide-Leon P, de Tilly LN, Mandell DM, Krings T (2017) Natural history of lesions with the MR imaging appearance of multinodular and vacuolating neuronal tumor. Neuroradiology 59(9):873–883

    Article  PubMed  Google Scholar 

  111. Lucas CG, Villanueva-Meyer JE, Whipple N, Oberheim Bush NA, Cooney T, Chang S et al (2020) Myxoid glioneuronal tumor, PDGFRA p.K385-mutant: clinical, radiologic, and histopathologic features. Brain Pathol 30(3):479–94

    Article  CAS  PubMed  Google Scholar 

  112. Abdel Razek AAK, Elsebaie NA, Zamora C, Castillo M (2020) Imaging of neuronal and mixed glioneuronal tumors. J Comput Assist Tomogr 44(3):356–369

    Article  PubMed  Google Scholar 

  113. Chiang JCH, Harreld JH, Tanaka R, Li X, Wen J, Zhang C et al (2019) Septal dysembryoplastic neuroepithelial tumor: a comprehensive clinical, imaging, histopathologic, and molecular analysis. Neuro Oncol 21(6):800–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Narvaez EdO, Inada BSY, Almeida PRSFd, Freitas LF, Soldatelli MD, Costa DMC et al (2021) Myxoid glioneuronal tumour – report of three cases of a new tumour in a typical location and review of literature. BJR Case Rep 7(4):20200139

    PubMed  PubMed Central  Google Scholar 

  115. Pickles JC, Mankad K, Aizpurua M, Paine SM, Bridges LR, Carceller F et al (2021) A case series of diffuse glioneuronal tumours with oligodendroglioma-like features and nuclear clusters (DGONC). Neuropathol Appl Neurobiol 47(3):464–467

    Article  PubMed  PubMed Central  Google Scholar 

  116. Karlowee V, Kolakshyapati M, Amatya VJ, Takayasu T, Nosaka R, Sugiyama K et al (2017) Diffuse leptomeningeal glioneuronal tumor (DLGNT) mimicking Whipple’s disease: a case report and literature review. Childs Nerv Syst 33(8):1411–1414

    Article  PubMed  Google Scholar 

  117. Lakhani DA, Mankad K, Chhabda S, Feizi P, Patel R, Sarma A, Pruthi S (2020) Diffuse leptomeningeal glioneuronal tumor of childhood. AJNR Am J Neuroradiol 41(11):2155–2159

  118. Chiang JCH, Harreld JH, Orr BA, Sharma S, Ismail A, Segura AD et al (2017) Low-grade spinal glioneuronal tumors with BRAF gene fusion and 1p deletion but without leptomeningeal dissemination. Acta Neuropathol 134(1):159–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rodriguez FJ, Perry A, Rosenblum MK, Krawitz S, Cohen KJ, Lin D et al (2012) Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity. Acta Neuropathol 124(5):627–641

    Article  PubMed  Google Scholar 

  120. Lee JK, Ko H-C, Choi J-G, Lee YS, Son B-C (2018) A case of diffuse leptomeningeal glioneuronal tumor misdiagnosed as chronic tuberculous meningitis without brain biopsy. Case Rep Neurol Med 2018:1391943-

    PubMed  PubMed Central  Google Scholar 

  121. Zhang C, Ostrom QT, Semmes EC, Ramaswamy V, Hansen HM, Morimoto L et al (2020) Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta Neuropathol Commun 8(1):173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncol 17(suppl_4):iv1–iv62

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ellison DW, Aldape KD, Capper D, Fouladi M, Gilbert MR, Gilbertson RJ et al (2020) cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors. Brain Pathol 30(5):863–866

    PubMed  PubMed Central  Google Scholar 

  124. Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F et al (2015) Molecular classification of ependymal tumors across all cns compartments, histopathological grades, and age groups. Cancer Cell 27(5):728–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pfister SM, Reyes-Múgica M, Chan JKC, Hasle H, Lazar AJ, Rossi S, Ferrari A, Jarzembowski JA, Pritchard-Jones K, Hill DA, Jacques TS, Wesseling P, López Terrada DH, von Deimling A, Kratz CP, Cree IA, Alaggio R (2022) A summary of the inaugural WHO classification of pediatric tumors: Transitioning from the optical into the molecular era. Cancer Discov 12(2):331–355

  126. Pietsch T, Wohlers I, Goschzik T, Dreschmann V, Denkhaus D, Dörner E et al (2014) Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-κB signaling pathway. Acta Neuropathol 127(4):609–611

    Article  PubMed  Google Scholar 

  127. Witt H, Gramatzki D, Hentschel B, Pajtler KW, Felsberg J, Schackert G et al (2018) DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro Oncol 20(12):1616–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nowak J, Jünger ST, Huflage H, Seidel C, Hohm A, Vandergrift LA et al (2019) MRI phenotype of RELA-fused pediatric supratentorial ependymoma. Clin Neuroradiol 29(4):595–604

    Article  PubMed  Google Scholar 

  129. Gamboa NT, Karsy M, Gamboa JT, Yoon NK, Driscoll MJ, Sonnen JA et al (2018) Preoperative and intraoperative perfusion magnetic resonance imaging in a RELA fusion-positive anaplastic ependymoma: A case report. Surg Neurol Int 9:144

    Article  PubMed  PubMed Central  Google Scholar 

  130. Onishi S, Yamasaki F, Nakano Y, Takayasu T, Amatya VJ, Kolakshyapati M et al (2018) RELA fusion-positive anaplastic ependymoma: molecular characterization and advanced MR imaging. Brain Tumor Pathol 35(1):41–45

    Article  PubMed  Google Scholar 

  131. Zaytseva M, Papusha L, Novichkova G, Druy A (2021) Molecular stratification of childhood ependymomas as a basis for personalized diagnostics and treatment. Cancers 13(19):4954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jünger ST, Andreiuolo F, Mynarek M, Wohlers I, Rahmann S, Klein-Hitpass L et al (2020) CDKN2A deletion in supratentorial ependymoma with RELA alteration indicates a dismal prognosis: a retrospective analysis of the HIT ependymoma trial cohort. Acta Neuropathol 140(3):405–407

    Article  PubMed  PubMed Central  Google Scholar 

  133. Andreiuolo F, Varlet P, Tauziède-Espariat A, Jünger ST, Dörner E, Dreschmann V et al (2019) Childhood supratentorial ependymomas with YAP1-MAMLD1 fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathol 29(2):205–216

    Article  CAS  PubMed  Google Scholar 

  134. Upadhyaya SA, Robinson GW, Onar-Thomas A, Orr BA, Billups CA, Bowers DC et al (2019) Molecular grouping and outcomes of young children with newly diagnosed ependymoma treated on the multi-institutional SJYC07 trial. Neuro Oncol 21(10):1319–1330

    Article  PubMed  PubMed Central  Google Scholar 

  135. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20(2):143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pajtler KW, Wen J, Sill M, Lin T, Orisme W, Tang B et al (2018) Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 136(2):211–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Uk-I JM, Taylor MD, Raybaud C (2010) Posterior fossa ependymomas: new radiological classification with surgical correlation. Childs Nerv Syst 26(12):1765–72

    Article  Google Scholar 

  138. Nagib MG, O’Fallon MT (1996) Posterior fossa lateral ependymoma in childhood. Pediatr Neurosurg 24(6):299–305

    Article  CAS  PubMed  Google Scholar 

  139. Massimino M, Barretta F, Modena P, Witt H, Minasi S, Pfister SM et al (2021) Second series by the Italian Association of Pediatric Hematology and Oncology of children and adolescents with intracranial ependymoma: an integrated molecular and clinical characterization with a long-term follow-up. Neuro Oncol 23(5):848–857

    Article  PubMed  Google Scholar 

  140. Yonezawa U, Karlowee V, Amatya VJ, Takayasu T, Takano M, Takeshima Y et al (2020) Radiology profile as a potential instrument to differentiate between posterior fossa ependymoma (PF-EPN) Group A and B. World Neurosurg 140:e320–e327

    Article  PubMed  Google Scholar 

  141. Swanson AA, Raghunathan A, Jenkins RB, Messing-Jünger M, Pietsch T, Clarke MJ et al (2019) Spinal cord ependymomas with MYCN amplification show aggressive clinical behavior. J Neuropathol Exp Neurol 78(9):791–797

    Article  PubMed  Google Scholar 

  142. Raffeld M, Abdullaev Z, Pack SD, Xi L, Nagaraj S, Briceno N et al (2020) High level MYCN amplification and distinct methylation signature define an aggressive subtype of spinal cord ependymoma. Acta Neuropathol Commun 8(1):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ghasemi DR, Sill M, Okonechnikov K, Korshunov A, Yip S, Schutz PW et al (2019) MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol 138(6):1075–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bandopadhayay P, Silvera VM, Ciarlini P, Malkin H, Bi WL, Bergthold G et al (2016) Myxopapillary ependymomas in children: imaging, treatment and outcomes. J Neurooncol 126(1):165–174

    Article  PubMed  Google Scholar 

  145. Abdallah A, Emel E, Gündüz HB, Sofuoğlu ÖE, Asiltürk M, Abdallah BG (2020) Long-term surgical resection outcomes of pediatric myxopapillary ependymoma: experience of two centers and brief literature review. World Neurosurg 136:e245–e261

    Article  PubMed  Google Scholar 

  146. Khanna V, Achey RL, Ostrom QT, Block-Beach H, Kruchko C, Barnholtz-Sloan JS et al (2017) Incidence and survival trends for medulloblastomas in the United States from 2001 to 2013. J Neurooncol 135(3):433–441

    Article  PubMed  Google Scholar 

  147. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472

    Article  CAS  PubMed  Google Scholar 

  148. Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G et al (2011) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121(3):381–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hill RM, Richardson S, Schwalbe EC, Hicks D, Lindsey JC, Crosier S et al (2020) Time, pattern, and outcome of medulloblastoma relapse and their association with tumour biology at diagnosis and therapy: a multicentre cohort study. Lancet Child Adolesc Health 4(12):865–874

    Article  PubMed  PubMed Central  Google Scholar 

  150. Mynarek M, von Hoff K, Pietsch T, Ottensmeier H, Warmuth-Metz M, Bison B et al (2020) Nonmetastatic medulloblastoma of early childhood: results from the prospective clinical trial HIT-2000 and an extended validation Cohort. J Clin Oncol 38(18):2028–2040

    Article  CAS  PubMed  Google Scholar 

  151. Robinson GW, Gajjar A (2020) Genomics paves the way for better infant medulloblastoma therapy. J Clin Oncol 38(18):2010–2013

    Article  PubMed  PubMed Central  Google Scholar 

  152. Perreault S, Ramaswamy V, Achrol AS, Chao K, Liu TT, Shih D et al (2014) MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 35(7):1263–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yeom KW, Mobley BC, Lober RM, Andre JB, Partap S, Vogel H et al (2013) Distinctive MRI features of pediatric medulloblastoma subtypes. AJR Am J Roentgenol 200(4):895–903

    Article  PubMed  Google Scholar 

  154. Iv M, Zhou M, Shpanskaya K, Perreault S, Wang Z, Tranvinh E et al (2019) MR imaging-based radiomic signatures of distinct molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 40(1):154–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Patay Z, DeSain LA, Hwang SN, Coan A, Li Y, Ellison DW (2015) MR imaging characteristics of wingless-type-subgroup pediatric medulloblastoma. AJNR Am J Neuroradiol 36(12):2386–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT et al (2016) Medulloblastoma Genotype dictates blood brain barrier phenotype. Cancer Cell 29(4):508–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE et al (2005) beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 23(31):7951–7957

    Article  CAS  PubMed  Google Scholar 

  158. Fruehwald-Pallamar J, Puchner SB, Rossi A, Garre ML, Cama A, Koelblinger C et al (2011) Magnetic resonance imaging spectrum of medulloblastoma. Neuroradiology 53(6):387–396

    Article  PubMed  Google Scholar 

  159. Naitoh Y, Sasajima T, Kinouchi H, Mikawa S, Mizoi K (2002) Medulloblastoma with extensive nodularity: single photon emission CT study with iodine-123 metaiodobenzylguanidine. AJNR Am J Neuroradiol 23(9):1564–1567

    PubMed  PubMed Central  Google Scholar 

  160. Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA et al (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123(4):473–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F et al (2016) Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 131(6):821–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ho B, Johann PD, Grabovska Y, De Dieu Andrianteranagna MJ, Yao F, Frühwald M et al (2020) Molecular subgrouping of atypical teratoid/rhabdoid tumors-a reinvestigation and current consensus. Neuro Oncol 22(5):613–624

    Article  CAS  PubMed  Google Scholar 

  163. Nowak J, Nemes K, Hohm A, Vandergrift LA, Hasselblatt M, Johann PD et al (2018) Magnetic resonance imaging surrogates of molecular subgroups in atypical teratoid/rhabdoid tumor. Neuro Oncol 20(12):1672–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V et al (2016) Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29(3):379–393

    Article  CAS  PubMed  Google Scholar 

  165. Pfister S, Remke M, Castoldi M, Bai AH, Muckenthaler MU, Kulozik A et al (2009) Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol 117(4):457–64

    Article  CAS  PubMed  Google Scholar 

  166. Lambo S, Gröbner SN, Rausch T, Waszak SM, Schmidt C, Gorthi A et al (2019) The molecular landscape of ETMR at diagnosis and relapse. Nature 576(7786):274–280

    Article  PubMed  PubMed Central  Google Scholar 

  167. Nowak J, Seidel C, Berg F, Pietsch T, Friedrich C, von Hoff K et al (2014) MRI Characteristics of ependymoblastoma: results from 22 centrally reviewed cases. Am J Neuroradiol 35(10):1996–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bianchi F, Tamburrini G, Gessi M, Frassanito P, Massimi L, Caldarelli M (2018) Central nervous system (CNS) neuroblastoma A case-based update. Childs Nerv Syst 34(5):817–823

    Article  PubMed  Google Scholar 

  169. Holsten T, Lubieniecki F, Spohn M, Mynarek M, Bison B, Löbel U et al (2020) Detailed clinical and histopathological description of 8 cases of molecularly defined CNS neuroblastomas. J Neuropathol Exp Neurol 80(1):52–59

    Article  Google Scholar 

  170. De Lima L, Sürme MB, Gessi M, Mastronuzzi A, Miele E, Tamburrini G et al (2020) Central nervous system high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)-case-based reviews. Childs Nerv Syst 36(8):1589–1599

    Article  PubMed  Google Scholar 

  171. Ferris SP, Velazquez Vega J, Aboian M, Lee JC, Van Ziffle J, Onodera C et al (2020) High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication-a comprehensive clinical, radiographic, pathologic, and genomic analysis. Brain Pathol 30(1):46–62

    Article  CAS  PubMed  Google Scholar 

  172. Yoshida Y, Nobusawa S, Nakata S, Nakada M, Arakawa Y, Mineharu Y et al (2018) CNS high-grade neuroepithelial tumor with BCOR internal tandem duplication: a comparison with its counterparts in the kidney and soft tissue. Brain Pathol 28(5):710–720

    Article  CAS  PubMed  Google Scholar 

  173. Kirkman MA, Pickles JC, Fairchild AR, Avery A, Pietsch T, Jacques TS et al (2018) Early wound site seeding in a patient with central nervous system high-grade neuroepithelial tumor with BCOR alteration. World Neurosurg 116:279–284

    Article  PubMed  Google Scholar 

  174. Al-Battashi A, Al Hajri Z, Perry A, Al-Kindi H, Al-Ghaithi I (2019) A cerebellar high-grade neuroepithelial tumour with BCOR alteration in a five-year-old Child: A case report. Sultan Qaboos Univ Med J 19(2):e153–e156

    Article  PubMed  PubMed Central  Google Scholar 

  175. Johann PD, Hovestadt V, Thomas C, Jeibmann A, Heß K, Bens S et al (2017) Cribriform neuroepithelial tumor: molecular characterization of a SMARCB1-deficient non-rhabdoid tumor with favorable long-term outcome. Brain Pathol 27(4):411–418

    Article  CAS  PubMed  Google Scholar 

  176. Park JY, Kim E, Kim DW, Chang HW, Kim SP (2012) Cribriform neuroepithelial tumor in the third ventricle: a case report and literature review. Neuropathology 32(5):570–576

    Article  PubMed  Google Scholar 

  177. Hasselblatt M, Oyen F, Gesk S, Kordes U, Wrede B, Bergmann M et al (2009) Cribriform Neuroepithelial Tumor (CRINET): A Nonrhabdoid Ventricular Tumor With INI1 Loss and Relatively Favorable Prognosis. J Neuropathol Exp Neurol 68(12):1249–1255

    Article  PubMed  Google Scholar 

  178. Thomas C, Wefers A, Bens S, Nemes K, Agaimy A, Oyen F et al (2020) Desmoplastic myxoid tumor, SMARCB1-mutant: clinical, histopathological and molecular characterization of a pineal region tumor encountered in adolescents and adults. Acta Neuropathol 139(2):277–286

    Article  CAS  PubMed  Google Scholar 

  179. Liu APY, Li BK, Pfaff E, Gudenas B, Vasiljevic A, Orr BA et al (2021) Clinical and molecular heterogeneity of pineal parenchymal tumors: a consensus study. Acta Neuropathol 141(5):771–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Löbel U., Rossi A (2015) Pediatric pineal region tumors. In: Rossi A (eds) Pediatric neuroradiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46258-4_22-1

  181. Goutagny S, Nault JC, Mallet M, Henin D, Rossi JZ, Kalamarides M (2014) High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol 24(2):184–189

    Article  CAS  PubMed  Google Scholar 

  182. Sahm F, Schrimpf D, Olar A, Koelsche C, Reuss D, Bissel J, Kratz A, Capper D, Schefzyk S, Hielscher T, Wang Q, Sulman EP, Adeberg S, Koch A, Okuducu AF, Brehmer S, Schittenhelm J, Becker A, Brokinkel B, Schmidt M, Ull T, Gousias K, Kessler AF, Lamszus K, Debus J, Mawrin C, Kim YJ, Simon M, Ketter R, Paulus W, Aldape KD, Herold-Mende C, von Deimling A (2015) TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst 108(5):djv377

  183. Juratli TA, Thiede C, Koerner MVA, Tummala SS, Daubner D, Shankar GM et al (2017) Intratumoral heterogeneity and TERT promoter mutations in progressive/higher-grade meningiomas. Oncotarget 8(65):109228–109237

    Article  PubMed  PubMed Central  Google Scholar 

  184. Guyot A, Duchesne M, Robert S, Lia AS, Derouault P, Scaon E et al (2019) Analysis of CDKN2A gene alterations in recurrent and non-recurrent meningioma. J Neurooncol 145(3):449–459

    Article  CAS  PubMed  Google Scholar 

  185. Perry A, Banerjee R, Lohse CM, Kleinschmidt-DeMasters BK, Scheithauer BW (2002) A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol 12(2):183–190

    CAS  PubMed  Google Scholar 

  186. Müller HL, Merchant TE, Warmuth-Metz M, Martinez-Barbera JP, Puget S (2019) Craniopharyngioma. Nat Rev Dis Primers 5(1):75

    Article  PubMed  Google Scholar 

  187. Hölsken A, Sill M, Merkle J, Schweizer L, Buchfelder M, Flitsch J et al (2016) Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol Commun 4(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  188. Mete O, Lopes MB, Asa SL (2013) Spindle cell oncocytomas and granular cell tumors of the pituitary are variants of pituicytoma. Am J Surg Pathol 37(11):1694–1699

    Article  PubMed  Google Scholar 

  189. Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E et al (2018) A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol 31(12):1770–1786

    Article  PubMed  PubMed Central  Google Scholar 

  190. Berzero G, Di Stefano AL, Ronchi S, Bielle F, Villa C, Guillerm E et al (2021) IDH-wildtype lower-grade diffuse gliomas: the importance of histological grade and molecular assessment for prognostic stratification. Neuro Oncol 23(6):955–966

    Article  CAS  PubMed  Google Scholar 

  191. Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M et al (2006) A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66(20):9852–9861

    Article  CAS  PubMed  Google Scholar 

  192. Liu T, Yuan X, Xu D (2016) Cancer-Specific Telomerase Reverse Transcriptase (TERT) promoter mutations: Biological and clinical implications. Genes (Basel) 7(7):38

  193. Pratt D, Quezado M, Abdullaev Z, Hawes D, Yang F, Garton HJL et al (2020) Diffuse intrinsic pontine glioma-like tumor with EZHIP expression and molecular features of PFA ependymoma. Acta Neuropathol Commun 8(1):37

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Olivia Carney and Sniya Sudhakar, Department of Radiology, Great Ormond Street Hospital, for many very helpful discussions.

Funding

No funding was received for this review. TJ is grateful for funding from the Brain Tumour Charity, Children with Cancer UK, Great Ormond Street Hospital Children’s Charity, Olivia Hodson Cancer Fund, Cancer Research UK, and the National Institute of Health Research. All research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre. ST receives funding from the UCL/UCLH NIHR Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cillian McNamara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

We obtained our institutional review board approval for including cases in this review study and the study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Consent to participate

Consent was waived for this retrospective study in which only fully anonymised studies are used.

Consent for publication

All authors consent to the publication of the manuscript and all materials contained therein in Neuroradiology.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

CMN and KM are joint first authors.

Key points

• The fifth edition of the WHO Classification of Tumours of the Central Nervous System places an increased emphasis on molecular data to reach a comprehensive integrated diagnosis.

• Several new tumour types and subtypes have been introduced, especially within the families of paediatric-type diffuse gliomas and embryonal tumours.

• Diffuse gliomas are now separated into paediatric-type and adult-type based on their underlying molecular differences.

• Diffuse paediatric gliomas are now divided into two families: paediatric-type diffuse low-grade gliomas and paediatric-type diffuse high-grade gliomas.

• Glioblastomas are adult-type tumours and are IDH-wildtype.

• Ependymomas are now classified according to a combination of histopathological and molecular features as well as anatomical location.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNamara, C., Mankad, K., Thust, S. et al. 2021 WHO classification of tumours of the central nervous system: a review for the neuroradiologist. Neuroradiology 64, 1919–1950 (2022). https://doi.org/10.1007/s00234-022-03008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-03008-6

Keywords

Navigation