Skip to main content

Advertisement

Log in

PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance

  • Research Article
  • Published:
Tumor Biology

Abstract

Poly(ADP-ribose) polymerase 3 (PARP3), a critical player in cellular response to DNA double-strand breaks (DSBs), plays an essential role in the maintenance of genome integrity. However, the role of PARP3 in tumorigenesis especially in glioblastoma remains largely unknown. In the present study, we found that the mRNA and protein levels of PARP3 were upregulated in primary glioblastoma tissues. Knockdown of PARP3 expression by lentivirus-based shRNA decreased cell glioblastoma proliferation and inhibited tumor growth in vivo by using a xenograft mouse model. Furthermore, we found that silencing the expression of PARP3 resulted in a synergistic radiosensitizing effect when combined with radiotherapy in glioblastoma cell lines. At the molecular level, we found that PARP3 interacted with FoxM1 to enhance its transcriptional activity and conferred glioblastoma cell radioresistance. Thus, our data suggest that PARP3 could be a therapeutic target to overcome radioresistance in glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507.

    Article  CAS  PubMed  Google Scholar 

  2. Van Meir EG et al. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60(3):166–93.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kruh GD. Introduction to resistance to anticancer agents. Oncogene. 2003;22(47):7262–4.

    Article  CAS  PubMed  Google Scholar 

  4. Perona R, Sanchez-Perez I. Control of oncogenesis and cancer therapy resistance. Br J Cancer. 2004;90(3):573–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Erpolat OP et al. Outcome of newly diagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvant temozolomide: a long-term analysis. Tumori. 2009;95(2):191–7.

    PubMed  Google Scholar 

  6. Noda SE et al. Molecular advances of brain tumors in radiation oncology. Semin Radiat Oncol. 2009;19(3):171–8.

    Article  PubMed  Google Scholar 

  7. Augustin A et al. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci. 2003;116(Pt 8):1551–62.

    Article  CAS  PubMed  Google Scholar 

  8. Rouleau M et al. PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. J Cell Biochem. 2007;100(2):385–401.

    Article  CAS  PubMed  Google Scholar 

  9. Rulten SL et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell. 2011;41(1):33–45.

    Article  CAS  PubMed  Google Scholar 

  10. Fenton AL et al. The PARP3- and ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair. Nucleic Acids Res. 2013;41(7):4080–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beck C et al. PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Res. 2014;42(9):5616–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Langelier MF, Riccio AA, Pascal JM. PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res. 2014;42(12):7762–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, et al. Glioblastoma multiforme formation and EMT: role of FoxM1 transcription factor. Curr Pharm Des. 2014;21(10):1268–71.

  14. Zhang N et al. FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair gene Rad51. Clin Cancer Res. 2012;18(21):5961–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y et al. FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res. 2008;68(21):8733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai B et al. Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene. 2007;26(42):6212–9.

    Article  CAS  PubMed  Google Scholar 

  17. Liu M et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res. 2006;66(7):3593–602.

    Article  CAS  PubMed  Google Scholar 

  18. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47(4):497–510.

    Article  CAS  PubMed  Google Scholar 

  20. Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71.

    Article  CAS  PubMed  Google Scholar 

  21. Lieber MR, Wilson TE. SnapShot: nonhomologous DNA end joining (NHEJ). Cell. 2010;142(3):496. e1.

    Article  PubMed  Google Scholar 

  22. Mohindra P et al. Non-cytotoxic radiosensitizers in brain radiotherapy: journey till the first decade of this millennium. Curr Cancer Drug Targets. 2012;12(3):260–78.

    Article  CAS  PubMed  Google Scholar 

  23. Haar CP et al. Drug resistance in glioblastoma: a mini review. Neurochem Res. 2012;37(6):1192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kesari S et al. DNA damage response and repair: insights into strategies for radiation sensitization of gliomas. Future Oncol. 2011;7(11):1335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chinot OL et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ning Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, JJ., Song, JN. & Qu, JQ. PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance. Tumor Biol. 36, 8617–8624 (2015). https://doi.org/10.1007/s13277-015-3554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3554-4

Keywords

Navigation