Skip to main content
Log in

Isolation and Characterization of Phytotoxic Compounds Produced by Streptomyces sp. AMC 23 from Red Mangrove (Rhizophora mangle)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Natural products produced by microorganisms have been utilized as sources of new drugs possessing a wide range of agrochemical and pharmacological activities. During our research on Actinomycetes from Brazilian mangroves, the ethyl acetate extract of Streptomyces sp. AMC 23 isolated from the red mangrove (Rhizophora mangle) rhizosphere produced a highly active compound against the microalga Chlorella vulgaris, often used to assess the phytotoxic activity. As a result, the bioassay-guided fractionation led to the isolation of the mixture of the known compounds bafilomycin B1 and bafilomycin B2. The chemical structures of bafilomycin B1 and bafilomycin B2 were established based on their spectroscopic data by infrared (IR), mass spectrometry (MS), 1H nuclear magnetic resonance (NMR), gradient-enhanced heteronuclear multiple quantum coherence (gHMQC), and gradient-enhanced heteronuclear multiple-bond connectivity (gHMBC) as well as comparison with reference data from the literature. Moreover, it was also possible to identify other bafilomycins using non-chromatographic-dependent techniques (Tandem mass spectrometry). Additionally, this is the first report on the phytotoxic activity of bafilomycin B1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou, H. W., Guo, C. L., Wong, Y. S., & Tam, N. F. Y. (2006). Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiology Letters, 262, 148–157.

    Article  CAS  Google Scholar 

  2. Kathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40, 81–251.

    Article  Google Scholar 

  3. Holguin, G., & Bashan, Y. (1996). Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biology & Biochemistry, 28, 1651–1660.

    Article  CAS  Google Scholar 

  4. Koch, B. P., Souza Filho, P. W. M., Behling, H., Cohen, M. C. L., Kattner, G., Rullkötter, J., Scholz-Böttcher, B., & Lara, R. J. (2011). Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle). Organic Geochemistry, 42, 62–73.

    Article  CAS  Google Scholar 

  5. Alongi, D. M. (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29(331), 349.

    Google Scholar 

  6. Schaeffer-Novelli, Y., Cintrón-Molero, G., Soares, M. L. G., & De-Rosa, T. D. (2000). Brazilian mangroves. Aquatic Ecosystem Health and Management, 3, 561–570.

    Article  Google Scholar 

  7. Shearer, C. A., Descals, E., Kohlmeyer, B., Kohlmeyer, J., Marvanová, L., Padgett, D., Porter, D., Raja, H. A., Schmit, J. P., Thorton, H. A., & Voglymayr, H. (2007). Fungal biodiversity in aquatic habitats. Biodiversity and Conservation, 16, 49–67.

    Article  Google Scholar 

  8. Gomes, N. C. M., Clearyl, D. F. R., Pinto, F. N., Egas, C., Almeida, A., Cunha, A., Mendonça-Hagler, L. C. S., & Smalla, K. (2010). Taking root: Enduring effect of rhizosphere bacterial colonization in mangroves. PLoS ONE, 5, e14065. doi:10.1371/journal.pone.0014065.

    Article  Google Scholar 

  9. Zhong-Shan, C., Jia-Hui, P., Wen-Cheng, T., Qi-Jin, C., & Yong-Cheng, L. (2009). Biodiversity and biotechnological potential of mangrove-associated fungi. Journal of Forestry Research, 20, 63–72.

    Article  Google Scholar 

  10. Ara, I., Matsumoto, A., Bakir, M. A., Kudo, T., Omura, S., & Takahashi, Y. (2008). Actinomadura maheshkhaliensis sp. nov., a novel actinomycete isolated from mangrove rhizosphere soil of Maheshkhali, Bangladesh. The Journal of General and Applied Microbiology, 54, 335–342.

    Article  CAS  Google Scholar 

  11. Kumar, K. S., Haritha, R., Mohan, Y. S. Y. V. J., & Ramana, T. (2011). Screening of marine actinobacteria for antimicrobial compounds. Journal of Microbiology Research, 6, 385–393.

    Article  Google Scholar 

  12. Xie, X. C., Mei, W. L., Zhao, Y. X., Hong, K., & Dai, H. F. (2006). A new degraded sesquiterpene from marine actinomycete Streptomyces sp. 0616208. Chinese Chemical Letters, 17, 1463–1465.

    CAS  Google Scholar 

  13. Demain, A. L., & Adrio, J. L. (2008). Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. Progress in Drug Research, 65, 251–289.

    Article  CAS  Google Scholar 

  14. Demain, A. L. (1998). Microbial natural products: alive and well in 1998. Nature Biotechnology, 16, 3–4.

    Article  CAS  Google Scholar 

  15. Demain, A. L. (2000). Microbial biotechnology. Trends in Biotechnology, 18, 26–31.

    Article  CAS  Google Scholar 

  16. Bérdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58, 1–26.

    Article  Google Scholar 

  17. Aroonsri, A., Kitani, S., Hashimoto, J., Kosone, I., Izumikawa, M., Komatsu, M., Fujita, N., Takahashi, Y., Shin-ya, K., Ikeda, H., & Nihira, T. (2012). Pleiotropic control of secondary metabolism and morphological development by KsbC, a butyrolactone autoregulator receptor homologue in Kitasatospora setae. Applied and Environmental Microbiology, 78, 8015–8024.

    Article  CAS  Google Scholar 

  18. Lazzarini, A., Cavaletti, L., Toppo, G., & Marinelli, F. (2000). Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek, 78, 399–405.

    Article  CAS  Google Scholar 

  19. Olano, C., Lombó, F., Méndez, C., & Salas, J. A. (2008). Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metabolic Engineering, 10, 281–292.

    Article  CAS  Google Scholar 

  20. Copping, L. G., & Duke, S. O. (2007). Natural products that have been used commercially as crop protection agents. Pest Management Science, 63, 524–554.

    Article  CAS  Google Scholar 

  21. Tanaka, Y., & Omura, S. (1993). Agroactive compounds of microbial origin. Annual Review of Microbiology, 47, 57–87.

    Article  CAS  Google Scholar 

  22. Singh, R. V., Sharma, A. K., & Tomar, R. K. S. (2003). Weed control in chickpea (Cicer arietinum) under late-sown condition. Indian Journal of Agronomy, 48, 114–116.

    CAS  Google Scholar 

  23. Xu, W., Tao, L., Gu, X., Shen, X., & Yuan, S. (2009). Herbicidal activity of the metabolite SPRI-70014 from Streptomyces griseolus. Weed Science, 57, 547–553.

    Article  CAS  Google Scholar 

  24. Sikkema, P. H., Shropshire, C., & Soltani, N. (2008). Tolerance of spring barley (Hordeum vulgare L.), oats (Avena sativa L.) and wheat (Triticum aestivum L.) to saflufenacil. Crop Protection, 27, 1495–1497.

    Article  CAS  Google Scholar 

  25. Cardoso, R. A., Pires, L. T. A., Zucchi, T. D., Zucchi, F. D., & Zucchi, T. M. A. D. (2010). Mitotic crossing-over induced by two commercial herbicides in diploid strains of the fungus Aspergillus nidulans. Genetics and Molecular Research, 9, 231–238.

    Article  CAS  Google Scholar 

  26. Ogawa, Y., Tsuruoka, T., Inouye, S., & Niida, T. (1973). Studies on a new antibiotic SF-1293. II Chemical structure of antibiotic SF-1293. Meiji Seika Kenkyu Nenpo, 13, 42–48.

    Google Scholar 

  27. Kuster, E., & Williams, S. T. (1964). Production of hydrogen sulfide by Streptomycetes and methods for its detection. Applied Microbiology, 12, 46–52.

    Google Scholar 

  28. Canizares-Villanueva, R. O., Martinez-Jeronimo, F., & Espinoza-Chavez, F. (2000). Acute toxicity to Daphnia magna of effluents containing Cd, Zn, and a mixture Cd-Zn, after metal removal by Chlorella vulgaris. Environmental Toxicology, 15, 160–164.

    Article  CAS  Google Scholar 

  29. Zucchi, T. D., Almeida, L. G., & Cônsoli, F. L. (2011). Culturable bacterial diversity associated with cysts of Eurhizococcus brasiliensis (Hempel) (Hemiptera: Margarodidae). World Journal of Microbiology & Biotechnology, 27, 791–797.

    Article  Google Scholar 

  30. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  31. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716–721.

    Article  CAS  Google Scholar 

  32. Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.

    Article  CAS  Google Scholar 

  33. Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Zoology, 20, 406–416.

    Article  Google Scholar 

  34. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  35. Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.

    Article  Google Scholar 

  36. Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In H. N. Munro (Ed.), Mammalian protein metabolism (pp. 21–123). New York: Academic Press.

    Chapter  Google Scholar 

  37. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  38. Ma, J., Xu, L., Wang, S., Zheng, R., Jin, S., Huang, S., & Huang, Y. (2002). Toxicity of 40 herbicides to the green alga Chlorella vulgaris. Ecotoxicology and Environmental Safety, 51, 128–132.

    Article  CAS  Google Scholar 

  39. Gachon, P., Kergomard, A., Staron, T., & Esteve, C. (1975). Grisorixin, an ionophorous antibiotic of the nigericin group. I. Fermentation, isolation, biological properties and structure. The Journal of Antibiotics, 28, 345–350.

    Article  CAS  Google Scholar 

  40. Canova, S. P., Petta, T., Reyes, L. F., Zucchi, T. D., Moraes, L. A. B., & Melo, I. S. (2010). Characterization of lipopeptides from Paenibacillus sp. (IIRAC30) suppressing Rhizoctonia solani. World Journal of Microbiology & Biotechnology, 26, 2241–2247.

    Article  CAS  Google Scholar 

  41. Li, J., Lu, C., & Shen, Y. (2010). Macrolides of the bafilomycin family produced by Streptomyces sp. CS. The Journal of Antibiotics, 63, 595–599.

    Article  CAS  Google Scholar 

  42. Yu, Z., Zhao, L. X., Jiang, C. L., Duan, Y., Wong, L., Carver, K. C., Schuler, L. A., & Shen, B. (2011). Bafilomycins produced by an endophytic actinomycete Streptomyces sp. YIM56209. The Journal of Antibiotics, 64, 159–162.

    Article  CAS  Google Scholar 

  43. Laakso, J. A., Mocek, U. M., Dun, J. V., Wouters, W., & Janicot, M. (2003). R176502, a new bafilolide metabolite with potent antiproliferative activity from a novel Micromonospora species. The Journal of Antibiotics, 56, 909–916.

    Article  CAS  Google Scholar 

  44. O’Shea, M. G., Rickards, R. W., Rothschild, J. M., & Lacey, E. (1997). Absolute configurations of macrolide antibiotics of the bafilomycin and leucanicidin groups. The Journal of Antibiotics, 50, 1073–1077.

    Article  Google Scholar 

  45. Moon, S. S., Hwang, W. H., Chung, Y. R., & Shin, J. (2003). New cytotoxic bafilomycin C1-amide produced by Kitasatospora cheerisanensis. The Journal of Antibiotics, 56, 856–861.

    Article  CAS  Google Scholar 

  46. Werner, G., Hagenmaier, H., Albert, K., Kohlshorn, H., & Drautz, H. (1983). The structure of the bafilomycins, a new group of macrolide antibiotics. Tetrahedron Letters, 24, 5193–5196.

    Article  CAS  Google Scholar 

  47. Carr, G., Williams, D. E., Díaz-Marrero, A. R., Patrick, B. O., Bottriell, H., Balgi, A. D., Donohue, E., Roberge, M., & Andersen, R. J. (2010). Bafilomycins produced in culture by Streptomyces spp. isolated from marine habitats are potent inhibitors of autophagy. Journal of Natural Products, 73, 422–427.

    Article  CAS  Google Scholar 

  48. Ohta, E., Kubota, N. K., Ohta, S., Suzuki, M., Ogawa, T., Yamashi, A., & Ikegami, S. (2001). Micromonospolides A-C, new macrolides from Micromonospora sp. Tetrahedron, 57, 8463–8467.

    Article  CAS  Google Scholar 

  49. Ekroos, K., Chernushevich, I. V., Simons, K., & Sheychenko, A. (2002). Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Analytical Chemistry, 74, 941–949.

    Article  CAS  Google Scholar 

  50. Vishwanath, V., Sulyok, M., Labuda, R., Bicker, W., & Krska, R. (2009). Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 395, 1355–1372.

    Article  CAS  Google Scholar 

  51. Gross, M. (2000). Charge-remote fragmentation: an account of research on mechanisms and applications. International Journal of Mass Spectrometry, 200, 611–624.

    Article  CAS  Google Scholar 

  52. Kim, S. D., Ryoo, I. J., Kim, C. J., & Yoo, I. D. (1993). Taxonomy, fermentation, isolation and characterization of a herbicidal compound, 3D5. Journal of Microbiology and Biotechnology, 3, 57–60.

    CAS  Google Scholar 

  53. Murkowski, A., & Skórska, E. (2010). Effect of (C6H5)3PbCl and (C6H5)3SnCl on delayed luminescence intensity, evolving oxygen and electron transport rate in Photosystem II of Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology, 84, 157–160.

    Article  CAS  Google Scholar 

  54. Magnusson, M., Heimman, K., & Negri, A. P. (2008). Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Marine Pollution Bulletin, 56, 1545–1552.

    Article  CAS  Google Scholar 

  55. Schmitt-Jansen, M., & Altenburger, R. (2007). The use of pulse-amplitude modulated (PAM) fluorescence-based methods to evaluate effects of herbicides in microalgal systems of different complexity. Toxicological and Environmental Chemistry, 89, 665–681.

    Article  CAS  Google Scholar 

  56. Santabarbara, S., Agostini, G., Casazza, A. P., Syme, C. D., Heathcote, P., Böhles, F., Evans, M. C. W., Jennings, R. C., & Carbonera, D. (2007). Chlorophyll triplet states associated with Photosystem I and Photosystem II in thylakoids of the green alga Chlamydomonas reinhardtii. Biochimica et Biophysica Acta, 1767, 88–105.

    Article  CAS  Google Scholar 

  57. Trebst, A., Depka, B., Jäger, J., & Oettmeier, W. (2004). Reversal of the inhibition of photosynthesis by herbicides affecting hydroxyphenylpyruvate dioxygenase by plastoquinone and tocopheryl derivatives in Chlamydomonas reinhardtii. Pest Management Science, 60, 669–674.

    Article  CAS  Google Scholar 

  58. Jr, N. G. G., & Nakahara, H. (2002). Growth and photosynthesis inhibition by agricultural pesticides in three freshwater microalgae. Fisheries Science, 68, 144–151.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for providing fellowships to EJC (grant 08/53000-0), RES (grant 12/01904-8), and TDZ (grant 11/14333-6), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for providing fellowship to SPC, and CNPq (Conselho Nacional para Desenvolvimento Científico e Tecnológico) for providing fellowship to JBC. TDZ is also grateful to FAPESP for providing the funding for developing this research (grant 11/50243-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Alberto Beraldo Moraes.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crevelin, E.J., Canova, S.P., Melo, I.S. et al. Isolation and Characterization of Phytotoxic Compounds Produced by Streptomyces sp. AMC 23 from Red Mangrove (Rhizophora mangle). Appl Biochem Biotechnol 171, 1602–1616 (2013). https://doi.org/10.1007/s12010-013-0418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0418-5

Keywords

Navigation