Skip to main content
Log in

Biodiversity and biotechnological potential of mangrove-associated fungi

  • Review Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

This review describes the present hot research areas of mangrove-associated fungi, including its biodiversity, ecological roles, novel metabolites productions and biotechnological potential. Mangrove-associated fungi were divided into saprophytic, parasitic and true symbiotic fungi based on its ecological roles. Saprophytic fungi are fundamental to decomposition and energy flow of mangrove, additionally, their potential toxicity also exists. Pathogenic fungi have significant effects on mangrove survival, growth, and fitness. Endophytic fungi, the most prolific source of diverse bioactive compounds found among that of mangrove-associated fungi, are found in most species of mangroves. Although a significant number of reports focused on the antimicrobial, insecticidal and other bioactive metabolites as well as many novel enzymes isolated from mangrove-associated fungi, and many of those metabolites from endophytic fungi are suspected to be of significant to mangrove, only few studies have provided convincing evidence for symbiotic producers in mangrove. Hence, this paper discusses the present progress of molecular methods used to correlate the ecological roles of endophytic fungi with their bioactive metabolites;, meanwhile, the potential of using metabolic engineering and post-genomic approaches to isolate more novel enzymes and bioactive compounds and to make their possible commercial application was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Wahab MAA. 2005. Diversity of marine fungi from Egyptian Red Sea mangroves. Bot Mar, 48: 248–355.

    Article  Google Scholar 

  • Abdel-Wahab MAA, Pang KL, EI-Sharouny HM, Jones EBG. 2001. Halosarpheia unicellularis sp. nov (Halosphaeriales, Ascomycota) based on morphological and molecular evidence. Mycoscienc, 42: 255–260.

    Article  Google Scholar 

  • Alias SA, Kuthubutheen AJ, Jones EBG. 1995. Frequency of occurrence of fungi on wood in Malaysian mangroves. Hydrobiologia, 295: 97–106.

    Article  Google Scholar 

  • Alias SA, Jones EBG. 2000. Vertical distribution of marine fungi on Rhizophora apiculata at Morib mangrove, Selangor, Malaysia. Mycoscience, 41:431–436.

    Article  Google Scholar 

  • Agatsuma T, Takahashi A, Kabuto C, Nozoe S. 1993. Revised structure and stereochemistry of hypothemycin. Chem Pharm Bull, 41: 373–375.

    CAS  Google Scholar 

  • Bailey JE. 1998. Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol Progr, 14: 8–20.

    Article  CAS  Google Scholar 

  • Baschien C, Manz W, Neu TR, Marvanová L, Szewzyk U. 2008. In situ detection of freshwater fungi in an alpine stream by new taxon-specific FISH probes. Appl Environ Microbiol, doi:10.1128/AEM.00815-08.

  • Bhadury P, Mohammad BT, Wright PC. 2006. The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol, DOI: 10.1007/s10295-005-0070-3.

  • Bhaluni DS, Rawat DS. 2005. Bioactive marine natural products. Springer Press.

  • Bourguet-Kondracki ML, Kornprobst JM. 2005. Marine pharmacology: potentialities in the treatment of infectious diseases, osteoporosis and Alzheimer’s disease. Adv Biochem Engin/Biotechnol, DOI 10.1007/b135824.

  • Bremer GB. 1995. Lower marine fungi (labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia, 295: 89–95.

    Article  Google Scholar 

  • Burtseva YV, Verigina NS, Sova VV, Pivkin MV, Zvyagintseva TN. 2003. Filamentous marine fungi as producers of o-glycosylhydrolases: β-1, 3-glucanase from Chaetomium idicum. Mar Biotechnol, 5: 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Cardellina JH. 1986. Marine natural products as leads to new pharmaceutical and agrochemical agents. Pure Appl Chem, 58: 365–374.

    Article  CAS  Google Scholar 

  • Chen GY, Lin YC, Vrijmoed LLP, Fong WF. 2006. A new isochroman from the marine endophytic fungus 1893#, Chem Nat Compds, 42:138–141.

    Article  CAS  Google Scholar 

  • Chen GY, Lin YC, Wen L, Vrijmoed LLP, Jones EBG. 2003. Two new metabolites of a marine endophytic fungus (No. 1893) from an estuarine mangrove on the South China Sea coast. Tetrahedron, 59: 4907–4909.

    Article  CAS  Google Scholar 

  • Cheng ZS, Tang WC, Su ZJ, Cai Y, Sun SF, Chen QJ, Wang FH, Lin YC, She ZG, Vrijmoed LLP. 2008. Identification of mangrove endophytic fungus 1403 (Fusarium proliferatum) based on morphological and molecular evidence. J Forestry Res, DOI: 10.1007/s11676-008-0030-7.

  • Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbæk L. 1999. Antibacterial activity of marine-derived fungi. Mycopathologia, 143: 135–138.

    Article  CAS  Google Scholar 

  • Cribb AB, Cribb JW. 1955. Marine fungi from Queensland-I. Papers Univ Queensland, Dept Bot, 3:78–107.

    Google Scholar 

  • D’souza DT, Tiwari R, Sah AK, Raghukumar C. 2006. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol, 38:504–511.

    Article  CAS  Google Scholar 

  • Dunn WB, Bailey NJC, Johnson HE. 2005. Measuring the metabolome: current analytical technologies. Analyst, 130: 606–625.

    Article  PubMed  CAS  Google Scholar 

  • Fryar SC, Davies J, Booth W, Hodgkiss IJ. 2004. Succession of fungi on dead and live wood in brackish water in Brunei. Mycologia, 96(2):219–225.

    Article  Google Scholar 

  • Fauvel MT, Bousquet-Melou A, Moulis C, Gleye J, Jensen SR. 1995. Iridoid glucosides from Avicennia germinans. Phytochem, 38:893–894.

    Article  CAS  Google Scholar 

  • Gadek PA (ed). 1998. Patch deaths in tropical Queensland rainforests: association and impact of Phytophthora cinnamoni and other soil borne pathogens. Cooperative Research Centre for Torpical Rainforest Ecology and Management, Technical Report, Cairns, 99 pp.

  • García-Guzmán G, Dirzo R. 2001. Patterns of leaf-pathogen infection in the understory of a Mexican rain forest: incidence, spatiotemporal variation, and mechanisms of infection. Am J Bot, 88:634–645.

    Article  PubMed  Google Scholar 

  • Garci-Maceira FI, Di Pietro A, Huertas-Gonzalez MD, Ruiz-Roldan MC, Roncero MI. 2001. Molecular characterization of an endo-polygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Envir Microbiol, 67:2191–2196.

    Article  Google Scholar 

  • Garrettson-Cornell L, Simpson J. 1984. Three new marine Phytophthora species from New South Wales. Mycotaxon, 19:453–70.

    Google Scholar 

  • Gilbert GS, Mejia-Chang M, Rojas E. 2002. Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism. Oecologia, 132:278–285.

    Article  Google Scholar 

  • Gonda KE, Jendrossek D, Molitoris HP. 2000. Fungal degradeation of the thermoplastic polymer poly-β-hydrooxybutyric acid (PHB) under simulated deep sea pressure. Hydrobiologia, 426:173–183.

    Article  CAS  Google Scholar 

  • Gopal B, Chauhan M. 2006. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci, 68:338–354.

    Article  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY. 2001. Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Molec Phylogen Evolut, 20(1):1–13.

    Article  CAS  Google Scholar 

  • Hatai K, Roza D, Nakayama T. 2000. Identification of lower fungi isolated from larvae of mangrove crab, Scylla serrata, in Indonesia. Mycoscience, 41:565–572.

    Article  Google Scholar 

  • Homolka L, Vyskocil P, Pilat P. 1988. Use of protoplasts in the improvement of filamentous fungi I. Mutagenesis of protoplasts of Oudemansiella mucida. Appl Microbiol Biotechnol, 28:166–169.

    Article  CAS  Google Scholar 

  • Huang HuaRong, Lin YongCheng, Zhou ShiNing, Verijmoed LLP. 2005. Metabolites of mangrove endophytic fungus 3920 from the South China Sea. Acta Sci Nat, 44(6): 137–138.

    CAS  Google Scholar 

  • Hyde KD. 1991. Fungal colonization of Rhizophora apiculata and Xylocarpus granatum poles in Kampung Kapok mangrove, Brunei. Sydowia, 43:31–38.

    Google Scholar 

  • Hyde KD. 1996. Marine fungi. In fungi of Australia. Vol 1B (C. Grurinovic and K. Mallett, eds), pp. 39–64. Canberra: ABRS/CSIRO.

    Google Scholar 

  • Hyde KD, Alias SA. 2000. Biodiversity and distribution of fungi associated with decomposing Nypa fruticans. Biodivers Conserv, 9:393–402.

    Article  Google Scholar 

  • Hyde KD, Lee SY. 1995. Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia, 295:107–118.

    Article  Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP. 1998. Role of fungi in marine ecosystems. Biodiv Conserv, 7: 1147–1161.

    Article  Google Scholar 

  • Isaka M, Suyarnsestakorn C, Tanticharoen M. 2002. Aigialomycins A-E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem, 67:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Nakagiri A. 1997. Mycoflora of the rhizospheres of mangrove trees. IFO Res Com Japan, 18: 40–44.

    Google Scholar 

  • Jiang GuangCe, Lin YongCheng, Zhou ShiNing, Vrijmoed LLP, Jones EBG. 2000. Studies on the secondary metabolites of mangrove fungus No. 1403 from the South China Sea. Acta Sci Nat, 39(6):68–72. (in Chinese)

    CAS  Google Scholar 

  • Jones EBG, Abdel-Wahab MA. 2005. Marine fungi from the Bahamas Islands. Bot Mar, 48: 356–364.

    Article  Google Scholar 

  • Jones EBG, Alias SA. 1997. Diversity of mangrove fungi. In: (Hyde KD, ed.) Diversity of tropical microfungi. Hong Kong University Press, Hong Kong. pp. 71–91.

    Google Scholar 

  • Jones EBG, Stanley SJ, Pinruan U. 2008. Marine endophyte sources of new chemical natural products: a review. Bot Mar, 51(3): 179–190.

    Article  Google Scholar 

  • Kathiresan K, Bingham BL. 2001. Biology of mangrove and mangrove ecosystem. Adva Mar Biol, 40: 81–251.

    Article  Google Scholar 

  • Kernaghan G, Sigler L, Khasa D. 2003. Mycorrhizal and root endophytic fungi of containerized Picea glauca seedlings assessed by rDNA sequence analysis. Microb Ecol, 45: 128–136.

    Article  PubMed  CAS  Google Scholar 

  • Kim CF, Lee SKY, Price J, Jack RW, Turner G, Kong RYC. 2003. Cloning and expression analysis of the pcbAB-pcbCβ-lactam genes in the marine fungi Kallichroma tethys. Appl Environ Microbiol, 69:1308–1314.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi J, Tsuda M. 2004. Bioactive products from Okinawan marine micro- and macro-organisms. Phytochem Rev, 3:267–274.

    Article  CAS  Google Scholar 

  • Koffas M, Roberge C, Lee K, Stephanopoulos G. 1999. Metabolic engineering. Annu Rev Biomed Eng, 01: 535–557.

    Article  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E. 1979. Marine mycology. The higher fungi. Academic Press, New York.

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B. 1993. Biogeographic observations on Pacific marine fungi. Mycologia, 85:337–346.

    Article  Google Scholar 

  • Krause SC, Raffa KF. 1992. Comparison of insect, fungal, and mechanically induced defoliation of larch: effects on plant productivity and subsequent host susceptibility. Oecologia, 90: 411–416.

    Article  Google Scholar 

  • Krohn K, Riaz M. 2004. Total synthesis of (+) - Xyloketal D, a secondary metabolite from the mangrove fungus Xylaria sp.. Tetrahedron Lett, 45: 293–294.

    Article  CAS  Google Scholar 

  • Krohn K, Steingröver K, Zsila F. 2001. Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem, 66: 6252–6.

    Article  PubMed  CAS  Google Scholar 

  • Lee OHK, Williams GA. 2002. Spatial distribution patterns of Littoraria species in Hong Kong mangroves. Hydrobiologia, 481: 137–145.

    Article  Google Scholar 

  • Li LY, Huang XS, Scattler I, Fu HZ, Grabley S, Lin WH. 2006. Structure elucidation of a new friedelane triterpene from the mangrove plant Hibiscus tiliaceus, Magn Res Chem, 44(6): 624–628.

    Article  CAS  Google Scholar 

  • Li LY, Sattler I, Deng ZW, Groth I, Walther G, M KD, Peschel G, Grabley S, Lin WH. 2008. A-seco-oleane-type triterpenes from Phomopsis sp. (strain HKI0458) isolated from the mangrove plant Hibiscus tiliaceus. Phytochem, 69(2): 511–517.

    Article  CAS  Google Scholar 

  • Li X, Kondo R, Sakai K. 2002. Biodegradation of sugarcane bagasse with marine fugus Phlebia sp. MG-60. J Wood Sci, 48: 159–162.

    Article  Google Scholar 

  • Li X, Kondo R, Sakai K. 2003. Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn and NH4 on manganese peroxidase production and Roly R-478 decolorization by the marine isolate Phlebia sp. MG-60 under saline conditions. J Wood Sci, 49: 355–360.

    Article  CAS  Google Scholar 

  • Lin YC, Wu XY, Feng S, Jiang GC, Luo JH, Zhou SN, Vrijmoed LLP, Jones EBG, Krohn K, Steingröver K, Zsila F. 2001. Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem, 66: 6252–6.

    Article  PubMed  CAS  Google Scholar 

  • Lin YC, Zhou SN. 2003a. Marine microorganism and its metabolites. Beijing: Chemical Industry Press, pp: 407.

    Google Scholar 

  • Lin YC, Zhou SN. 2003b. Marine microorganism and its metabolites. Beijing: Chemical Industry Press, pp: 426–427.

    Google Scholar 

  • Lin YC, Wang J, Wu XY, Zhou SN, Vrijmoed LLP, Jones EBG. 2002a. A novel compound enniatin G from the mangrove fungus Halosarpheia sp. (strain 732) from the South China Sea. Aust J Chem, 55: 225–227.

    Article  CAS  Google Scholar 

  • Lin YC, Wu XY, Deng ZJ, Wang J, Zhou SN, Vrijmoed LLP, Jones EBG. 2002b. The metabolites of the mangrove fungus Verruculina enalia No. 2606 from a salt lake in the Bahamas. Phytochem, 59: 469–471.

    Article  CAS  Google Scholar 

  • Liu AiRong, Wu XiaoPeng, Xu Tong. 2007. Research advances in endophytic fungi of mangrove. Chin J Appl Ecol, 18(4): 912–918. (in Chinese)

    CAS  Google Scholar 

  • Lively CM. Johnson SG, Delph LF, Clay K. 1995. Thinning reduces the effect of rust infection on jewelweed (Impatiens capensis). Ecology, 76: 1859–1862.

    Article  Google Scholar 

  • Lucero ME, Barrow JR, Osuna P, Reyes I. 2006. Plant-fungal interactions in arid and semi-arid ecosystems: Large-scale impacts from microscale processes. J Arid Envir, 65:276–284.

    Article  Google Scholar 

  • Macintosh DJ, Ashton EC. 2002. A review of mangrove biodiversity conservation and management. Centre for tropical ecosystems research, University of Aarhus, Denmark (pdf file).

    Google Scholar 

  • Mackenzie SE, Gurusamy G.S, Piórko A, Strongman DB, Hu T, Wright JLC. 2004. Isolation of sterols from marine fungus Corollosprora iacera. Can J Microbiol, 50: 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  • Mapelli V, Olsson L, Nielsen J. 2008. Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. DOI: 10.1016/j.tibtech.2008.05.008.

  • Maria GL, Sridhar KR. 2003. Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol, 55(2–4):241–251.

    Google Scholar 

  • Martín JF. 2000. Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactam producing organisms. From Abrahams’s discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot, 53: 1008–10021.

    PubMed  Google Scholar 

  • Masuma R, Yamaguchi Y, Noumi M, Omura S, Namikoshi M. 2001. Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience, 42: 455–459.

    Article  CAS  Google Scholar 

  • Maxwell GS. 1968. Pathogenicity and salinity tolerance of Phytophthora sp. isolated from Avicennia resinifera (Forst F.)-some initial investigations. Tane, 14: 13–23.

    Google Scholar 

  • Mayer AMS, Hamann MT. 2004. Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol, 6: 37–52.

    Article  PubMed  CAS  Google Scholar 

  • Mckee KL. 1995. Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. Am J Bot, 82: 299–307.

    Article  Google Scholar 

  • Müller CB, Krauss J. 2005. Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol, 8: 450–456.

    Article  PubMed  CAS  Google Scholar 

  • Newell SY. 1992. Estimating fungal biomass and productivity in decomposing litter. In Carroll GC, Wicklow DT (eds), The fungal community. Its organization and role in the ecosystem. Marcel Dekker, Inc, New York: 521–561.

    Google Scholar 

  • Newell SY. 1996. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exper Mar Biol Ecol, 200: 187–206.

    Article  Google Scholar 

  • Newell SY, Fell JW. 1992. Ergosterol content of living and submerged, decaying leaves and twigs of red mangrove. Can J Microbiol, 38: 979–982.

    Article  CAS  Google Scholar 

  • Newell SY, Miller JD, Fell JW. 1987. Rapid and pervasive occupation of fallen mangrove leaves by a marine zoosporic fungus. Appl Envir Microbiol, 53(10): 2464–2469.

    CAS  Google Scholar 

  • Nair MSR, Carey ST. 1980. Metabolites of pyrenomycetes XIII: Structure of (+) hypothemycin, an. antibiotic macrolide from Hypomyces trichothecoides. Tetrahedron Lett. 21: 2011–2012.

    Article  CAS  Google Scholar 

  • Niture SK, Kumar AR, Pant A. 2006. Role of glucose in production and repression of polygalacturonase and pectatelynase from phytopathogenic fungus iFusarium moniliforme NCIM 1276. World J Microbiol Biotechnol, 22:893–899.

    Article  CAS  Google Scholar 

  • Niture SK, Pant A. 2004. Purification and biochemical characterization of polygalacturonase II produced in semi-solid medium by a strain of Fusarium moniliforme. Microbiol Res, 159: 305–314.

    Article  PubMed  CAS  Google Scholar 

  • Pan JH, Jones EBG, She ZG, Pang JY, Lin YC. 2008. Review of bioactive compounds from fungi in the South China Sea. Bot Mar, 51(3): 179–190.

    Article  CAS  Google Scholar 

  • Parekh S, Vinci VA, Strobel RJ. 2000. Improvement of microbial strains and fermentation processs. Appl Microbiol Biotechnol, 54:287–301.

    Article  PubMed  CAS  Google Scholar 

  • Pegg KG Gillespie NC, Forsberg LI. 1980. Phytophthora spp. associated with mangrove death in central coastal Queensland. Australas Pl Pathol, 9:6–7.

    Article  Google Scholar 

  • Poch GK, Gloer JB. 1989. Helicascolides A and B: New lactones from the marine fungus Helicascus kanaloanus. J Nat Prod, 52: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Poch GK, Gloer JB. 1991. Auranticins A and B: Two depsidones from a mangrove isolate of the fungus Preussia aurantiaca. J Nat Prod, 54: 213–217

    Article  PubMed  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. 2005. Xylanases form fungi: properties and Industrial applications. Appl Microbiol Biotechnol, 67: 577–591.

    Article  PubMed  CAS  Google Scholar 

  • Robertson AI. 1988. Decomposition of mangrove leaf litter in tropical Australia. J Exp Mar Biol Ecol, 116: 235–247.

    Article  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM. 2004. The role of fungi symbioses in the adaptation of plants to high stress environments. Mitig adap strat Glob Change, 9:261–272.

    Article  Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud VR, Mishra R. 2004. Xylanases of marine fungi of potentiall use of bioleaching of paper pulp. J Ind Microbiol Biotechnol, 31: 433–441.

    Article  PubMed  CAS  Google Scholar 

  • Roza D, Hatai K. 1999. Pathogenicity of fungi isolated from the larvae of the mangrove crab, Scylla serrata, in Indonesia. Mycoscience, 40: 427–431.

    Article  Google Scholar 

  • Sadaba RB, Vrijmoed LLP, Jones EBG, Hodgkiss IJ. 1995. Observations on vertical distribution of fungi associated with standing senescent Acanthus ilicifolius stems at Mai Po mangrove, Hong Kong. Hydrobiologia, 295: 119–126.

    Article  Google Scholar 

  • Sallenave-Namont C, Pouchus YF, Robiou du Pont T, Lassus P, Verbist JF. 2000. Toxigenic saprophytic fungi in marine shellfish farming areas. Mycopathologia, 149: 21–25.

    Article  PubMed  CAS  Google Scholar 

  • Sariaslani FS. 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol, 61: 51–69.

    Article  PubMed  CAS  Google Scholar 

  • Sarma VV, Hyde KD. 2001. A review on frequently occurring fungi in mangrove. Fung Divers, 8: 1–34.

    Article  Google Scholar 

  • Sarma VV, Hyde KD, Vittal BPR. 2001. Frequency of occurrence of mangrove fungi from the east coast of India. Hydrobiologia, 455: 41–53.

    Article  Google Scholar 

  • Schmit JP, Shearer CA. 2003. A checklist of mangrove-associated fungi, their geography and known host plants. Mycotaxon, 80:423–477.

    Google Scholar 

  • Schmit JP, Shearer CA. 2004. Geographic and host distribution of lignicolous mangrove microfungi. Bot Mar, 47: 496–500.

    Article  Google Scholar 

  • Sengupta A, Chaudhuri S. 2002. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 12: 169–174.

    PubMed  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H. 2007. Fuangal diversity in aquatic habitats. Biodivers Conserv, 16: 49–67.

    Article  Google Scholar 

  • Song XH, Liu XH, Lin YC. 2004. Metabolites of mangrove fungus No. K23 and interaction of carboline with DNA. J Trop Oceangr, 23(3): 66–71.

    CAS  Google Scholar 

  • Sridhar KR. 2004. Mangrove fungi in India. Curr Sci, 86(12):1586–1587.

    Google Scholar 

  • Strobel GA, Daisy B, Castillo U, Harper J. 2004. Natural products from endophytic microorganisms. J Nat Prod, 67: 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA. 1998. Foliar fungal endophytes from two species of the mangrove Rhizophora. Microbiol, 44: 1003–1006.

    CAS  Google Scholar 

  • Tattar TA, Klekowski EJ, Stern AI. 1994. Dieback and mortality in red mangrove, Rhizophora mangle L. in southwest Puerto Rico. Arbor J, 18: 419–429.

    Google Scholar 

  • ten Have A, Breuil WO, Wubben JP, Visser J, van Kan JA. 2001. Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol, 33: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y. 2000. Phosphate -solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils, 30: 460–468.

    Article  CAS  Google Scholar 

  • Venkateswara Sarma V, Hyde KD, Vittal BPR. 2001. Frequency of occurrence of mangrove fungi from the east coast of India. Hydobiologia, 455: 41–53.

    Article  Google Scholar 

  • Vrijmoed LLP, Jones EBG, Hyde KD. 1991. Observations on subtropical mangrove fungi in the Pearl River Estuary. Acta Sci Nat, 33(1): 78–85.

    Google Scholar 

  • Wang GuiWen, Li HaiYing, Sun WenBo. 2003. Primary study on arbuscular mycorrhizas of mangrove in Qinzhou Bay. Guihaia, 23(5): 445–449. (in Chinese)

    CAS  Google Scholar 

  • Wang GY. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol, 33(7): 545–51.

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Mao WW, She ZG, Li CR, Yang DQ, Lin YC, Fu LW. 2007. Synthesis and biological evaluation of 12 allenic aromatic ethers. Bioorg Medic Chem Lett, 17: 2785–2788.

    Article  CAS  Google Scholar 

  • Weishampel PA, Bedford BL. 2006. Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza, 16(7): 495–502.

    Article  PubMed  Google Scholar 

  • Wu RY. 1993. Studies on the microbial ecology of the Tansui Estuary. Bot Bull Acad Sin. 34:13–30.

    Google Scholar 

  • Wu XY, Liu XH, Jiang GC, Lin YC, Willy C, Vrijmoed LLP. 2005. Xyloketal G, a novel metabolite from the mangrove fungus Xylaria sp. 2508. Chem Nat Comps. 41(1): 27–29.

    Article  CAS  Google Scholar 

  • Xia XK, Huang HR, She ZG, Shao CL, Liu F, Cai XL, Vrijmoed LLP, Lin YC. 2007. 1H and 13C NMR assignments for five anthraquinones from the mangrove endophytic fungus Halorosellinia sp. (No. 1403). Magn Reson Chem, 45: 1006–1009.

    Article  PubMed  CAS  Google Scholar 

  • Xiao YongTang, Zheng ZhongHui, Huang YaoJian, Xu QingYan, Su WenJin, Song SiYang. 2005. Nematicidal and brine shrimp lethality of secondary metabolites from marine-drived fungi. Journal of Xiamen University (Nature Science), 44(6): 847–850. (in Chinese)

    Google Scholar 

  • Xin Li, Ryuichiro Kondo, Kokki Sakai. 2002. Biodegradation of sugarcane bagasse with marine fugus phlebia sp. MG-60. J Wood Sci, 48: 159–162.

    Article  Google Scholar 

  • Xin Li, Ryuichiro Kondo, Kokki Sakai. 2003. Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn and NH4 on manganese peroxidase production and Roly R-478 decolorization by the marine isolate phlebia sp. MG-60 under saline conditions. J Wood Sci, 49: 355–360.

    Article  CAS  Google Scholar 

  • Xu MJ, Gessner G, Groth I, Lange C, Christner A, Bruhn T, Deng ZW, Li X, Heinemann SH, Grabley S, Bringmann G, Sattler I, Lin WH. 2007. Shearing D-K, new indole triterpenoids from an endophytic Penicillium sp. (strain HKI0459) with blocking activity on large-conductance calcium -activated potassium channels. Tetrahedron, 63: 435–444.

    Article  CAS  Google Scholar 

  • Xu QingYan, Huang YaoJian, Zheng ZhongHui, Song SiYang. 2005. Purification, elucidation and activities study of cytosporone B. Journal of Xiamen University (Natural Science), 44(3): 425–428. (in Chinese)

    CAS  Google Scholar 

  • Yang LiShan, Huang YaoJian, Zheng ZhongHui, Song SiYang, Su WenJin, Sheng YueMao. 2006. The population fluctuation and bioactivity of endophytic fungi from mangrove plants in different seasons. Journal of Xiamen University (Natural Science), 45(sup.):95–99. (in Chinese)

    Google Scholar 

  • You JiaLan, Mao Wei, Zhou ShiNing, Wang Jun, Lin YongCheng, Wu SiYang. 2006. Fermentation conditions and characterization of endophytic fungus #732 producting novel enniatin G from South China Sea. Act Sci Nat, 45(4): 75–78. (in Chinese)

    CAS  Google Scholar 

  • Yu JH, Keller N. 2005. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol, 43: 437–58.

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZhiQuan, Huang ZeYu. 2001. Study on the species and ecological character of mangrove pathogenic fungi in Guangxi. Guihaia, 21(2): 157–162. (in Chinese)

    Google Scholar 

  • Zhu F, Lin YC. 2006. Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea. Chin Sci Bull, 51(12):1426–1430.

    Article  CAS  Google Scholar 

  • Zhu F, Lin YC, Wang J, Zhou SN, Vrijmoed LLP. 2006. Methabolites of mangrove endophytic fungus #2492 from the South China Sea. Mar Sci Bull, 25(3): 34–37.

    Google Scholar 

  • Zeng XB, Wang HY, He LY, Lin YC, Li ZT. 2005. Medium optimization of carbon and nitrogen sources for the production of eucalyptene A and xyloketal A from Xylaria sp. 2508 using response surface methodology. Proc Biochem, 41: 293–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-shan Cheng.

Additional information

Foundation project: This work was supported partly by the Guangzhou Natural Science Foundation (Grant No. 2007Z3-EO581), the Guangdong Provincial Natural Science Foundation (Grant No. 2007A0200300001-7; 05003268), the Chinese High-Tech 863 Project (Grant No. 2006AA09Z422), and the National Natural Science Foundation of China (Grant No. 20572136).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Zs., Pan, JH., Tang, Wc. et al. Biodiversity and biotechnological potential of mangrove-associated fungi. Journal of Forestry Research 20, 63–72 (2009). https://doi.org/10.1007/s11676-009-0012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-009-0012-4

Keywords

Navigation