Skip to main content
Log in

Culturable bacterial diversity associated with cysts of Eurhizococcus brasiliensis (Hempel) (Hemiptera: Margarodidae)

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The ground-pearl Eurhizococcus brasiliensis is an important insect pest of grapes. Nowadays, its biology is still barely known and studies related to its secondary symbionts are virtually non-existent. Our main goal was to evaluate the bacterial diversity associated with cysts of E. brasiliensis using a culture-dependent approach. Six different isolation media were used and shown to be suitable for culturing bacteria associated with E. brasiliensis. A total of 39 bacteria strains were isolated and classified into 10 different morphotypes. The ISP-4 medium was the most suitable for bacteria isolation from cysts of the ground-pearl, providing the highest number of morphotypes. 16S rDNA gene analysis demonstrated a high diversity of bacteria associated with cysts, with six Pseudomonas chlororaphis isolates (the most predominant morphotype) and three different morphotypes of Bacillus spp. as the most representative genera. The phylogenetic analysis showed close affinity between the isolated morphotypes and bacterial strains usually isolated from plant and soil samples. Sphingopyxis and Stenotrophomonas were isolated for the first time from arthropods. Although it was not possible to determine the primary source of infection by these bacteria, our data suggests that these microorganisms may be transitory and acquired from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6,-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405

    Article  CAS  Google Scholar 

  • Baumann O (2005) Biology of bacteriocyte-associated endo symbionts of plant sap-sucking insects. Ann Rev Microbiol 59:55–89

    Article  Google Scholar 

  • Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591

    Article  CAS  Google Scholar 

  • Bextine B, Lauzon C, Potter S, Lampe D, Miller TA (2004) Delivery of a genetically marked Alcaligenes sp. to the glassy winged sharpshooter for use in a paratransgenic control strategy. Curr Microbiol 48:327–331

    Article  CAS  Google Scholar 

  • Botton M, Hickel ER, Soria SJ, Teixeira I (2000) Bioecologia e controle da pérola-da-terra Eurhizococcus brasiliensis (Hempel, 1922) (Hemiptera: Margarodidae) na cultura da videira. Circular Técnica 27, Empresa Brasileira de Pesquisa Agropecuária—Embrapa Uva e Vinho, RS, Brasil, p 24

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York

    Google Scholar 

  • Buchner P (1966) Endosymbiosestudien an schildläusen. Z Morph Ökol Tiere 56:275–362

    Article  Google Scholar 

  • Dale C, Moran NA (2008) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    Article  Google Scholar 

  • Douglas AE (2007) Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25:338–342

    Article  CAS  Google Scholar 

  • Dowd PF (1991) Symbiont-mediated detoxification in insect herbivores. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. Wiley, New York, pp 411–440

    Google Scholar 

  • Downie DA, Gullan PJ (2005) Phylogenetic congruence of mealybugs and their primary endosymbionts. J Evol Biol 18:315–324

    Article  CAS  Google Scholar 

  • Duron O, Labbé P, Berticat C, Rousset F, Guillot S, Raymond M, Weill M (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–313

    CAS  Google Scholar 

  • Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, Bandi C, Daffonchio D (2008) Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. Adv Exp Medicine Biol 627:49–59

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29:60–65

    Article  Google Scholar 

  • Fitch WN (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Ghanim M, Kontsedalov S (2009) Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Manag Sci 65:939–942

    Article  CAS  Google Scholar 

  • Gruwell ME, Morse GE, Normark BB (2007) Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Mol Phylogen Evol 44:267–280

    Article  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kikuchi Y (2009) Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ 24:195–204

    Article  Google Scholar 

  • Kikuchi Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T (2009) Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosamatid stinkbugs. BMC Biol 7:2

    Article  Google Scholar 

  • Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proc Royal Soc Lond 270B:S209–S212

    Google Scholar 

  • Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792

    Article  CAS  Google Scholar 

  • Kuster E, Williams ST (1964) Selection of media for isolation of Streptomyces. Nature 202:928–929

    Article  Google Scholar 

  • Kuzina LV, Peloquin JJ, Vacek DC, Miller TA (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol 42:290–294

    CAS  Google Scholar 

  • Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93

    Article  CAS  Google Scholar 

  • Lane JD (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lauzon CR, Potter SE, Prokopy RJ (2003) Degradation and detoxification of the dihydrochalcone phloridzin by Enterobacter agglomerans, a bacterium associated with the apple pest, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Environ Entomol 32:953–962

    Article  CAS  Google Scholar 

  • Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:195–198

    Article  Google Scholar 

  • Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. PNAS 104:8627–8633

    Article  CAS  Google Scholar 

  • Nuin P (2008) Mr MT Gui: cross-platform interface for model test and Mr Model test. (http://www.genedrift.org/mtgui.php)

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Evolution 4:1803–1807

    Google Scholar 

  • Panizzi AR, Noal AC (1971) Eurhizococcus brasiliensis (Hempel, 1922): disseminação no município de Passo Fundo—hospedeiros e dados biológicos. Instituto de Pesquisa e Planejamento (IPEPLAN), Universidade de Passo Fundo, RS, Brasil, p 34

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for constructing phylogenetic trees. Mol Biol Evo 4:406–425

    CAS  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781

    Article  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Soria SJ, Dal Conte AF (2000) Bioecologia e controle das pragas da videira no Brasil. Entomol Vectores 7:73–102

    Google Scholar 

  • Stolz A (2009) Molecular characteristics of xenobiotics-degrading sphigomonads. Appl Microbiol Biotechnol 81:793–811

    Article  CAS  Google Scholar 

  • Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Teixeira I, Botton M, Loeck AE (2002) Avaliação de inseticidas visando ao controle de Eurhizococcus brasiliensis (Hempel) (Hemiptera: Margarodidae) em novos plantios de videira. Neotr Entomol 31:457–461

    CAS  Google Scholar 

  • Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, Aksoy S (2006) Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16:149–156

    Article  CAS  Google Scholar 

  • Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. PNAS 101:15042–15045

    Article  CAS  Google Scholar 

  • Zucchi TD, Moraes LAB, Melo IS (2008) Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains. J Appl Microbiol 105:2153–2160

    Article  CAS  Google Scholar 

  • Zucchi TD, Guidolim AS, Cônsoli FC (2010) Isolation and characterization of actinobactéria ectosymbiont of Acromyrmex subterraneus brunneus (Hymenoptera: Formicidae). Microbiol Res doi:10.1016/j.micres.2010.01.009

Download references

Acknowledgments

Authors would like to thank Dr Marcos Botton (EMBRAPA) for providing samples of Eurhizococcus brasiliensis, Jason M. Dillon for English revision and an anonymous reviewer for his comments and suggestions. The authors are in debt to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPESP (Fundação de Amparo à Pesquisa de São Paulo) for providing fellowships to LGA (grant 119867/2009-5) and TDZ (grant 07/58712-5), respectively. FLC is also thankful to FAPESP for providing the necessary funds for developing this research (grant 07/59019-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiago D. Zucchi or Fernando L. Cônsoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zucchi, T.D., Almeida, L.G. & Cônsoli, F.L. Culturable bacterial diversity associated with cysts of Eurhizococcus brasiliensis (Hempel) (Hemiptera: Margarodidae). World J Microbiol Biotechnol 27, 791–797 (2011). https://doi.org/10.1007/s11274-010-0518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0518-0

Keywords

Navigation