Skip to main content
Log in

Assessment of Genetic Stability and Instability of Tissue Culture-Propagated Plantlets of Aloe vera L. by RAPD and ISSR Markers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient plantlet regeneration with and without intermediate callus phase was achieved for a selected genotype of Aloe vera L. which is sweet in test and used as a vegetable and source of food. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) marker assays were employed to evaluate genetic stability of plantlets and validate the most reliable method for true-to-type propagation of sweet aloe, among two regeneration systems developed so far. Despite phenotypic similarities in plantlets produced through both regeneration systems, the differences in genomic constituents of plantlets produced through intermediate callus phase using soft base of inflorescence have been effectively distinguished by RAPD and ISSR markers. No polymorphism was observed in regenerants produced following direct regeneration of axillary buds, whereas 80% and 73.3% of polymorphism were observed in RAPD and ISSR, respectively, in the regenerants produced indirectly from base of the inflorescence axis via an intermediate callus phase. Overall, 86.6% of variations were observed in the plantlets produced via an intermediate callus phase. The occurrence of genetic polymorphism is associated with choice of explants and method used for plantlet regeneration. This confirms that clonal propagation of sweet aloe using axillary shoot buds can be used for commercial exploitation of the selected genotype where a high degree of fidelity is an essential prerequisite. On the other hand, a high degree of variations were observed in plantlets obtained through indirect regeneration and thus cannot be used for the mass multiplication of the genotype; however, it can be used for crop improvement through induction of somaclonal variations and genetic manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Campestrini, L. H., Kuhnen, S., Lemos, P. M. M., Bach, D. B., Dias, P. F., & Maraschin, M. (2006). Journal of Technology Management Innovation, 1, 77–79.

    Google Scholar 

  2. Roy, S. C., & Sarkar, A. (1991). Scientia Horticulturae, 47, 107–113.

    Article  Google Scholar 

  3. Meyer, H. J., & van Staden, J. (1991). Plant Cell Tissue and Organ Culture, 26(3), 167–171. doi:10.1007/BF00039939.

    Google Scholar 

  4. Richwine, A. M., Tipton, J. L., & Thompson, A. (1995). Horticulturea Science, 30, 1443–1444.

    Google Scholar 

  5. Abrie, A. L., & van Staden, J. (2001). Plant Growth Regulation, 33, 19–23. doi:10.1023/A:1010725901900.

    Article  CAS  Google Scholar 

  6. Liao, Z., Chen, M., Tan, F., Sun, X., & Tang, K. (2004). Plant Cell Tissue and Organ Culture, 76(1), 83–86. doi:10.1023/A:1025868515705.

    Article  CAS  Google Scholar 

  7. Aggarwal, D., & Barna, K. S. (2004). Journal of Plant Biochemistry and Biotechnology, 13, 77–79.

    Google Scholar 

  8. Velcheva, M., Faltin, Z., Vardi, A., Eshdat, Y., & Perl, A. (2005). Plant Cell Tissue and Organ Culture, 83(3), 293–301. doi:10.1007/s11240-005-7192-1.

    Article  Google Scholar 

  9. Bairu, M. W., Stirk, W. A., Dolezal, K., & van Staden, J. (2007). Plant Cell Tissue and Organ Culture, 90, 15–23. doi:10.1007/s11240-007-9233-4.

    Article  CAS  Google Scholar 

  10. Singh, M., Rathore, M. S., Panwar, D., Rathore, J. S., Dagla, H. R., & Shekhawat, N. S. (2009). Journal of Sustainable Forestry, 28, 935–950. doi:10.1080/10549810903344660.

    Article  Google Scholar 

  11. Rathore, M. S., Chikara, J., & Shekhawat, N. S. (2011). Applied Biochemistry and Biotechnology, 163, 860–868. doi:10.1007/s12010-010-9090-1.

    Article  CAS  Google Scholar 

  12. Salvi, N. D., George, L., & Eapen, S. (2001). Plant Cell Tissue and Organ Culture, 66, 113–119.

    Article  CAS  Google Scholar 

  13. Braun, A. C. (1959). Proceedings of National Academy of Sciences USA, 45, 932–938.

    Article  CAS  Google Scholar 

  14. Bairu, M. W., Aremu, A. O., & Van Staden, J. (2011). Plant Growth Regulation, 63, 147–173.

    Article  CAS  Google Scholar 

  15. Brar, D. S., & Jain, S. M. (1998). In S. M. Jain, D. S. Brar, & B. S. Ahloowalia (Eds.), Somaclonal variation and induced mutations in crop improvement (pp. 15–37). Dordrecht: Kluwer Academic.

    Google Scholar 

  16. Jain, S. M. (2001). Euphytica, 118, 153–166.

    Article  CAS  Google Scholar 

  17. Bhatia, R., Singh, K. P., Jhang, T., & Sharma, T. R. (2009). Scientia Horticulturae, 119, 208–211.

    Article  CAS  Google Scholar 

  18. Lu, G., Zhang, X., Zou, Y., Zou, Q., Xiang, X., & Cao, J. (2007). Plant Cell Tissue and Organ Culture, 88, 319–327.

    Article  CAS  Google Scholar 

  19. Smykal, P., Valledor, L., Rodriguez, R., & Griga, M. (2007). Plant Cell Reports, 26, 1985–1998.

    Article  CAS  Google Scholar 

  20. Martin, M., Sarmento, D., & Oliveira, M. M. (2004). Plant Cell Reports, 23, 492–496.

    Article  Google Scholar 

  21. Palombi, M. A., & Damiano, C. (2002). Plant Cell Reports, 20, 1061–1066.

    Article  CAS  Google Scholar 

  22. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–479. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  23. Doyle, J. J., & Doyle, J. L. (1990). Focus, 12, 13–15.

    Google Scholar 

  24. Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). Nucleic Acids Research, 18, 6531–6535.

    Article  CAS  Google Scholar 

  25. Goto, S., Thakur, R. C., & Ishii, K. (1998). Plant Cell Reports, 8, 193–197.

    Article  Google Scholar 

  26. Mallon, R., Rodrıguez-Oubina, J., & Gonzalez, M. L. (2010). Plant Cell Tissue and Organ Culture, 101, 31–39.

    Article  Google Scholar 

  27. Ray, T., Dutta, I., Saha, P., Das, S., & Roy, S. C. (2006). Plant Cell Tissue and Organ Culture, 85, 11–21.

    Article  CAS  Google Scholar 

  28. Al-Zahim, M. A., Ford-Lloyd, B. V., & Newbury, H. J. (1999). Plant Cell Reports, 18, 473–477.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research (CSIR) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangal Singh Rathore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathore, M.S., Chikara, J., Mastan, S.G. et al. Assessment of Genetic Stability and Instability of Tissue Culture-Propagated Plantlets of Aloe vera L. by RAPD and ISSR Markers. Appl Biochem Biotechnol 165, 1356–1365 (2011). https://doi.org/10.1007/s12010-011-9352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9352-6

Keywords

Navigation