Skip to main content
Log in

A New Nitrilase-Producing Strain Named Rhodobacter sphaeroides LHS-305: Biocatalytic Characterization and Substrate Specificity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The characteristics of the new nitrilase-producing strain Rhodobacter sphaeroides LHS-305 were investigated. By investigating several parameters influencing nitrilase production, the specific cell activity was ultimately increased from 24.5 to 75.0 μmol g−1 min−1, and hereinto, the choice of inducer proved the most important factor. The aromatic nitriles (such as 3-cyanopyridine and benzonitrile) were found to be the most favorable substrates of the nitrilase by analyzing the substrate spectrum. It was speculated that the unsaturated carbon atom attached to the cyano group was crucial for this type of nitrilase. The value of apparent K m, substrate inhibition constant, and product inhibition constant of the nitrilase against 3-cyanopyridine were 4.5 × 10−2, 29.2, and 8.6 × 10−3 mol L−1, respectively. When applied in nicotinic acid preparation, the nitrilase is able to hydrolyze 200 mmol L−1 3-cyanopyridine with 93% conversion rate in 13 h by 6.1 g L−1 cells (dry cell weight).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh, R., Sharma, R., Tewari, N., Geetanjali, & Rawat, D. S. (2006). Nitrilase and its application as a ‘green’ catalyst. Chemistry and Biodiversity, 3, 1279–1287.

    Article  CAS  Google Scholar 

  2. Thuku, R. N., Brady, D., Benedik, M. J., & Sewell, B. T. (2009). Microbial nitrilases: Versatile, spiralforming, industrial enzymes. The Society for Applied Microbiology, J Appl Microbiol, 106, 703–727.

    Article  CAS  Google Scholar 

  3. Thimann, K. V., & Mahadevan, S. (1964). Nitrilase. I. Occurrence, preparation, and general properties of the enzyme. Archives of Biochemistry and Biophysics, 105, 133–141.

    Article  CAS  Google Scholar 

  4. Mahadevan, S., & Thimann, K. V. (1964). Nitrilase. II. Substrate specificity and possible mode of action. Archives of Biochemistry and Biophysics, 107, 62–68.

    Article  CAS  Google Scholar 

  5. Piotrowski, M. (2008). Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry, 69, 2655–2667.

    Article  CAS  Google Scholar 

  6. Howden, A., Jill Harrison, C., & Preston, G. (2009). A conserved mechanism for nitrile metabolism in bacteria and plants. The Plant Journal, 57, 243–253.

    Article  CAS  Google Scholar 

  7. Arnaud, A., Galzy, P., & Jallageas, J. (1976). Nitrilase activity in several bacteria. C. R. Acad. Sci. Hebd. Seances Acad Sci, 283, 571–573.

    CAS  Google Scholar 

  8. Cowan, D., Cramp, R., Pereira, R., Graham, D., & Almatawah, Q. (1998). Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes. Extremophiles, 2, 207–216.

    Article  CAS  Google Scholar 

  9. Banerjee, A., Sharma, R., & Banerjee, U. C. (2002). The nitrile-degrading enzymes: Current status and future prospects. Appl Microbiol Biot, 60, 33–44.

    Article  CAS  Google Scholar 

  10. Harper, D. B. (1977). Fungal degradation of aromatic nitriles. Enzymology of C–N cleavage by Fusarium solani. Biochemical Journal, 167, 685–692.

    CAS  Google Scholar 

  11. Nolan, L. M., Harnedy, P. A., Turner, P., Hearne, A. B., & O’Reilly, C. (2003). The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. FEMS Microbiology Letters, 221, 161–165.

    Article  CAS  Google Scholar 

  12. Rey, P., Rossi, J. C., Taillades, J., Gros, G., & Nore, O. (2004). Hydrolysis of nitriles using an immobilized nitrilase: Applications to the synthesis of methionine hydroxy analogue derivatives. J Agr Food Chem, 52, 8155–8162.

    Article  CAS  Google Scholar 

  13. Ben Bassat, A., Walls, A., Plummer, M., Sigmund, A., Spillan, W., & DiCosimo, R. (2008). Optimization of biocatalyst specific activity for glycolic acid production. Advanced Synthesis and Catalysis, 350, 1761–1769.

    Article  CAS  Google Scholar 

  14. Shen, M., Liu, Z. Q., Zheng, Y. G., & Shen, Y. C. (2009). Enhancing endo-nitrilase production by a newly isolated arthrobacter nitroguajacolicus ZJUTB06-99 through optimization of culture medium. Biotechnol Bioproc E, 14, 795–802.

    Article  CAS  Google Scholar 

  15. Yang, C. S., Jin, C., Zhou, W. Y., Wang, X. D., & Wei, D. Z. (2010). Screening of new nitrilase-producing strains with high activity of hydrolyzing 3-cyanopyridine. Journal of East China University of Science and Technology(Natural Science Edition), 5, 645–650.

    Google Scholar 

  16. Woese, C. R., Stachebrandt, E., Weisburg, W. G., Paster, B. J., Madigan, M. T., Fowler, C. R. M., et al. (1984). The phylogeny of the purple bacteria: The α subdivision. Systematic and Applied Microbiology, 5, 315–326.

    Article  CAS  Google Scholar 

  17. Gest, H. (1972). Energy conservation and generation of reducing power in bacterial photosynthesis. Advances in Microbial Physiology, 7, 243–282.

    Article  CAS  Google Scholar 

  18. Eraso, J. M., & Kaplan, S. (1994). prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. Journal of Bacteriology, 176, 32–43.

    CAS  Google Scholar 

  19. Hossein Shahbani, Z., & Kambiz Akbari, N. (2006). Biochemical characterization of the decaprenyl diphosphate synthase of Rhodobacter sphaeroides for coenzyme Q(10) production. Appl Microbiol Biot, 73, 796–806.

    Article  Google Scholar 

  20. Yen, H., & Shih, T. (2009). Coenzyme Q(10) production by Rhodobacter sphaeroides in stirred tank and in airlift bioreactor. Bioproc Biosyst Eng, 32, 711–716.

    Article  CAS  Google Scholar 

  21. Ao, S., Douglas, C., Grundfest, W., Schruben, L., & Wu, X. (2007) Microbial biohydrogen production by Rhodobacter sphaeroides OU001 in photobioreactor. World Congress held at San Francisco on Engineering and Computer Science, pp. 141–145. INT ASSOC ENGINEERS-IAENG.

  22. Inci, E., Altan, T., Ufuk, G., Ela, E., & Meral, Y. (2008). Hydrogen production by Rhodobacter sphaeroides OU001 in a flat plate solar bioreactor. Int J Hydrogen Energ, 33, 531–541.

    Article  Google Scholar 

  23. Wang, Y., Gong, J., & Zhang, Z. (2007) Biodegradation of chlorobenzene by immobilized photosynthetic bacteria Rhodobacter sphaeroides. Advances in Management of Technology, Proceedings, 639–643

  24. Almatawah, Q. A., Cramp, R., & Cowan, D. A. (1999). Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles, 3, 283–291.

    Article  CAS  Google Scholar 

  25. O’Reilly, C., & Turner, P. D. (2003). The nitrilase family of CN hydrolysing enzymes—A comparative study. Journal of Applied Microbiology, 95, 1161–1174.

    Article  Google Scholar 

  26. Zheng, Y. G., Chen, J., Liu, Z. Q., Wu, M. H., Xing, L. Y., & Shen, Y. C. (2008). Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Applied Microbiology and Biotechnology, 77, 985–993.

    Article  CAS  Google Scholar 

  27. Yadav, G., & Devi, K. (2002). Enzymatic synthesis of perlauric acid using Novozym 435. Biochemical Engineering Journal, 10, 93–101.

    Article  CAS  Google Scholar 

  28. Wu, H., & Tsai, M. (2004). Kinetics of tributyrin hydrolysis by lipase. Enzyme Microb Tech, 35, 488–493.

    Article  CAS  Google Scholar 

  29. Banerjee, A., Kaul, P., & Banerjee, U. (2006). Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Archives of Microbiology, 184, 407–418.

    Article  CAS  Google Scholar 

  30. Sharma, N. N., Sharma, M. K., Harish, K., & Tek, C. B. (2006). Nocardia globerula NHB-2: Bench scale production of nicotinic acid. Process Biochemistry, 41, 2078–2081.

    Article  CAS  Google Scholar 

  31. Almatawah, Q. A., Cramp, R., & Cowan, D. A. (1999). Thermostable nitrilase catalysed production of nicotinic acid from 3-cyanopyridine. Enzyme Microb Tech, 25, 718–724.

    Article  CAS  Google Scholar 

  32. Prasad, S., Misra, A., Jangir, V. P., Awasthi, A., Raj, J., & Bhalla, T. C. (2007). A propionitrile-induced nitrilase of Rhodococcus sp NDB 1165 and its application in nicotinic acid synthesis. World J Microb Biot, 23, 345–353.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by National Basic Research Program (973) of China (no. 2009CB724703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Wang, X. & Wei, D. A New Nitrilase-Producing Strain Named Rhodobacter sphaeroides LHS-305: Biocatalytic Characterization and Substrate Specificity. Appl Biochem Biotechnol 165, 1556–1567 (2011). https://doi.org/10.1007/s12010-011-9375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9375-z

Keywords

Navigation