Skip to main content

Biodegradation of Nitriles by Rhodococcus

  • Chapter
  • First Online:
Biology of Rhodococcus

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

Nitriles occur naturally in the environment, are produced by the metabolic pathways of organisms or are released by the chemical and pharmaceutical industries, from agricultural applications or from the processing of fossil fuels. Therefore, a variety of nitrile-converting bacterial species are used to alleviate this toxic effect. Among these bacteria, Rhodococcus species have proven to be a superior group for the clean-up of pollutants. Nitriles are converted into the less toxic carboxylic acid either by nitrilases or by nitrile hydratase (NHase)/amidase systems. Although NHases, nitrilases and amidases produced by different strains exhibit different catalytic characteristics towards aliphatic nitriles and aromatic nitriles, these enzymes exhibit considerable homology in amino acid sequence or structure. In contrast, the enzymes with different origins present different types of gene organization and regulatory patterns, although the amidase gene is always linked to the NHase gene. Due to the advantage of being resistant to toxic compounds, applications of Rhodococcus in pollutant biodegradation and biocatalytic processes are very promising. While studies on the biodegradation of nitrile pollutants focus on the screening and discovery of strains, the industrial application of these enzymes as biocatalysts focuses on engineering combined with immobilization of both Rhodococcus cells and enzymes to improve their performance under the adverse conditions in the catalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander M (2001) Biodegradation and bioremediation. Q Rev Biol 2:1–2

    Google Scholar 

  • An X, Cheng Y, Huang M, Sun Y, Wang H, Chen X, Wang J, Li D, Li C (2018) Treating organic cyanide-containing groundwater by immobilization of a nitrile-degrading bacterium with a biofilm-forming bacterium using fluidized bed reactors. Environ Pollut 237:908–916

    Article  CAS  PubMed  Google Scholar 

  • Andrade J, Karmali A, Carrondo MA, Frazao C (2007) Structure of amidase from pseudomonas aeruginosa showing a trapped acyl transfer reaction intermediate state. J Biol Chem 282(27):19598–19605

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Tani Y, Yamada H (1980) A new enzyme “nitrile hydratase” which degrades acetonitrile in combination with amidase. Agric Biol Chem 44(9):2251–2252

    CAS  Google Scholar 

  • Baxter J, Garton N, Cummings S (2006) The impact of acrylonitrile and bioaugmentation on the biodegradation activity and bacterial community structure of a topsoil. Folia Microbiol 51(6):591–597

    Article  CAS  Google Scholar 

  • Bhalla TC, Miura A, Wakamoto A, Ohba Y, Furuhashi K (1992) Asymmetric hydrolysis of α-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol 37(2):184–190

    Article  CAS  Google Scholar 

  • Bhalla TC, Sharma N, Bhatia RK (2012) Microbial degradation of cyanides and nitriles. In: Satyanarayana T, Narain JB, Prakash A (eds) Microorganisms in environmental management. Springer, Dordrecht, pp 569–587

    Chapter  Google Scholar 

  • Bhalla TC, Kumar V, Kumar V, Thakur N (2018) Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotechnol 185:1–22

    Article  CAS  Google Scholar 

  • Chen J, Yu H, Liu C, Liu J, Shen Z (2013) Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. J Biotechnol 164(2):354–362

    Article  CAS  Google Scholar 

  • Cowan D, Cramp R, Pereira R, Graham D, Almatawah Q (1998) Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes. Extremophiles 2(3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Cramp RA, Cowan DA (1999) Molecular characterisation of a novel thermophilic nitrile hydratase. Biochim Biophys Acta 1431(1):249–260

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Cui W, Liu Z, Zhou L, Kobayashi M, Zhou Z (2014) Improvement of stability of nitrile hydratase via protein fragment swapping. Biochem Biophys Res Commun 450(1):401–408

    Article  CAS  PubMed  Google Scholar 

  • DeLorenzo DM, Rottinghaus AG, Henson WR, Moon TS (2018) Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth Biol 7(2):727–738

    Article  CAS  PubMed  Google Scholar 

  • Dong H-P, Liu Z-Q, Zheng Y-G, Shen Y-C (2010) Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis. Appl Microbiol Biotechnol 87(4):1335–1345

    Article  CAS  PubMed  Google Scholar 

  • Endo I, Nojiri M, Tsujimura M, Nakasako M, Nagashima S, Yohda M, Odaka M (2001) Fe-type nitrile hydratase. J Inorg Biochem 83(4):247–253

    Article  CAS  PubMed  Google Scholar 

  • Fang S, An X, Liu H, Cheng Y, Hou N, Feng L, Huang X, Li C (2015) Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium. Bioresour Technol 185:28–34

    Article  CAS  PubMed  Google Scholar 

  • Fleming FF, Yao L, Ravikumar P, Funk L, Shook BC (2010) Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 53(22):7902–7917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong J-S, Lu Z-M, Li H, Shi J-S, Zhou Z-M, Xu Z-H (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11(1):142

    Article  CAS  Google Scholar 

  • Gong J-S, Shi J-S, Lu Z-M, Li H, Zhou Z-M, Xu Z-H (2017) Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises. Crit Rev Biotechnol 37(1):69–81

    Article  CAS  PubMed  Google Scholar 

  • Harper DB (1985) Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) NCIB 11215, using p-hydroxybenzonitrile as sole carbon source. Int J Biochem 17(6):677–683

    Article  CAS  PubMed  Google Scholar 

  • He Y-C, Zhou Q, Ma C-L, Cai Z-Q, Wang L-Q, Zhao X-Y, Chen Q, Gao D-Z, Zheng M, Wang X-D (2012) Biosynthesis of benzoylformic acid from benzoyl cyanide by a newly isolated Rhodococcus sp. CCZU10-1 in toluene–water biphasic system. Bioresour Technol 115:88–95

    Article  CAS  PubMed  Google Scholar 

  • He Y-C, Wu Y-D, Pan X-H, Ma C-L (2014) Biosynthesis of terephthalic acid, isophthalic acid and their derivatives from the corresponding dinitriles by tetrachloroterephthalonitrile-induced Rhodococcus sp. Biotechnol Lett 36(2):341–347

    Article  CAS  PubMed  Google Scholar 

  • Holtze MS, Sørensen J, Hansen HCB, Aamand J (2006) Transformation of the herbicide 2, 6-dichlorobenzonitrile to the persistent metabolite 2, 6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Biodegradation 17(6):503–510

    Article  CAS  PubMed  Google Scholar 

  • Holtze MS, Sørensen SR, Sørensen J, Aamand J (2008) Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments–insights into degradation pathways, persistent metabolites and involved degrader organisms. Environ Pollut 154(2):155–168

    Article  CAS  PubMed  Google Scholar 

  • Hourai S, Miki M, Takashima Y, Mitsuda S, Yanagi K (2003) Crystal structure of nitrile hydratase from a thermophilic Bacillus smithii. Biochem Biophys Res Commun 312(2):340–345

    Article  CAS  PubMed  Google Scholar 

  • Hoyle AJ, Bunch AW, Knowles CJ (1998) The nitrilases of Rhodococcus rhodochrous NCIMB 11216. Enzym Microb Technol 23(7–8):475–482

    Article  CAS  Google Scholar 

  • Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y (1997) Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure 5(5):691–699

    Article  CAS  PubMed  Google Scholar 

  • Ismailsab M, Reddy PV, Nayak AS, Karegoudar TB (2017) Biotransformation of aromatic and heterocyclic amides by amidase of whole cells of Rhodococcus sp. MTB5: biocatalytic characterization and substrate specificity. Biocatalysis Biotransform 35(1):74–85

    Article  CAS  Google Scholar 

  • Jiao S, Chen J, Yu H, Shen Z (2017) Tuning and elucidation of the colony dimorphism in Rhodococcus ruber associated with cell flocculation in large scale fermentation. Appl Microbiol Biotechnol 101(16):6321–6332

    Article  CAS  PubMed  Google Scholar 

  • Jiao S, Yu H, Shen Z (2018) Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression. New Biotechnol 44:41–49

    Article  CAS  Google Scholar 

  • Jin L-Q, Li Y-F, Liu Z-Q, Zheng Y-G, Shen Y-C (2011) Characterization of a newly isolated strain Rhodococcus erythropolis ZJB-09149 transforming 2-chloro-3-cyanopyridine to 2-chloronicotinic acid. New Biotechnol 28(6):610–615

    Article  CAS  Google Scholar 

  • Kamal A, Kumar MS, Kumar CG, Shaik TB (2011) Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol 21(1):37–42

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Yoshida S, Xie S-X, Asano Y (2004) Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J Biosci Bioeng 97(4):250–259

    Article  CAS  PubMed  Google Scholar 

  • Kimani SW, Agarkar VB, Cowan DA, Sayed FR, Sewell BT (2007) Structure of an aliphatic amidase from geobacillus pallidus rapc8. Acta Crystallogr 63(10):1048–1058

    CAS  Google Scholar 

  • Kobayashi M, Shimizu S (1998) Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol 16(8):733

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Kohyama E, Yoshimura A, Aoshima D, Yoshida T, Kawamoto H, Nagasawa T (2006) Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms. Appl Microbiol Biotechnol 72(3):600–606

    Article  CAS  PubMed  Google Scholar 

  • Kohyama E, Dohi M, Yoshimura A, Yoshida T, Nagasawa T (2007) Remaining acetamide in acetonitrile degradation using nitrile hydratase-and amidase-producing microorganisms. Appl Microbiol Biotechnol 74(4):829–835

    Article  CAS  PubMed  Google Scholar 

  • Komeda H, Hori Y, Kobayashi M, Shimizu S (1996a) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci USA 93(20):10572–10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996b) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci USA 93(9):4267–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996c) A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. J Biol Chem 271(26):15796–15802

    Article  CAS  PubMed  Google Scholar 

  • Kubáč D, Čejková A, Masak J, Jirků V, Lemaire M, Gallienne E, Bolte J, Stloukal R, Martínková L (2006) Biotransformation of nitriles by Rhodococcus equi A4 immobilized in LentiKats®. J Mol Catal B Enzym 39(1–4):59–61

    Article  CAS  Google Scholar 

  • Kuhn ML, Martinez S, Gumataotao N, Bornscheuer U, Liu D, Holz RC (2012) The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Biochem Biophys Res Commun 424(3):365–370

    Article  CAS  PubMed  Google Scholar 

  • Langdahl BR, Bisp P, Ingvorsen K (1996) Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology 142(1):145–154

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Park E-H, Ko H-J, Bang WG, Kim H-Y, Kim KH, Choi I-G (2015) Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family. Biochem Biophys Res Commun 467(2):268–274

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li Y, Cheng X, Feng L, Xi C, Zhang Y (2013) Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Bioresour Technol 131:390–396

    Article  CAS  PubMed  Google Scholar 

  • Liang L-Y, Zheng Y-G, Shen Y-C (2008) Optimization of β-alanine production from β-aminopropionitrile by resting cells of Rhodococcus sp. G20 in a bubble column reactor using response surface methodology. Process Biochem 43(7):758–764

    Article  CAS  Google Scholar 

  • Liu Y, Cui W, Liu Z, Cui Y, Xia Y, Kobayashi M, Zhou Z (2014) Enhancement of thermo-stability and product tolerance of Pseudomonas putida nitrile hydratase by fusing with self-assembling peptide. J Biosci Bioeng 118(3):249–252

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Wang T, Yu H (2006) Expression and catalyzing process of the nirilase in Rhodococcus rhodochrous tg1-A6. Mod Chem Ind 26:109

    Google Scholar 

  • Luo H, Ma J, Chang Y, Yu H, Shen Z (2016) Directed evolution and mutant characterization of Nitrilase from Rhodococcus rhodochrous tg1-A6. Appl Biochem Biotechnol 178(8):1510–1521

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Yu H (2012) Engineering of Rhodococcus cell catalysts for tolerance improvement by sigma factor mutation and active plasmid partition. J Ind Microbiol Biotechnol 39(10):1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Yu H, Pan W, Liu C, Zhang S, Shen Z (2010) Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Bioresour Technol 101(1):285–291

    Article  CAS  PubMed  Google Scholar 

  • Makhongela HS, Glowacka AE, Agarkar VB, Sewell BT, Weber B, Cameron RA et al (2007) Novel thermostable nitrilase superfamily amidase from geobacillus pallidus showing acyl transfer activity. Applied Microbiology & Biotechnology 75(4):801–811

    Article  CAS  Google Scholar 

  • Maksimova YG, Gorbunova A, Demakov V (2017) Stereoselective biotransformation of phenylglycine nitrile by heterogeneous biocatalyst based on immobilized bacterial cells and enzyme preparation. Dokl Biochem Biophys 1:183–185

    Article  Google Scholar 

  • Martínková L, Pátek M, Veselá AB, Kaplan O, Uhnáková B, Nešvera J (2010) Catabolism of nitriles in Rhodococcus. In: Biology of Rhodococcus Springer Berlin, pp 171–206

    Google Scholar 

  • Mathew CD, Nagasawa T, Kobayashi M, Yamada H (1988) Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Environ Microbiol 54(4):1030–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meth-Cohn O, Wang M-X (1997) An in-depth study of the biotransformation of nitriles into amides and/or acids using Rhodococcus rhodochrous AJ270 1. J Chem Soc Perkin Trans 1(8):1099–1104

    Article  Google Scholar 

  • Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun 288(5):1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Mukram I, Nayak AS, Kirankumar B, Monisha T, Reddy PV, Karegoudar T (2015) Isolation and identification of a nitrile hydrolyzing bacterium and simultaneous utilization of aromatic and aliphatic nitriles. Int Biodeterior Biodegrad 100:165–171

    Article  CAS  Google Scholar 

  • Mukram I, Ramesh M, Monisha T, Nayak AS, Karegoudar T (2016) Biodegradation of butyronitrile and demonstration of its mineralization by Rhodococcus sp. MTB5. 3 Biotech 6(2):141

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagasawa T, Nakamura T, Yamada H (1990) Production of acrylic acid and methacrylic acid using Rhodococcus rhodochrous J1 nitrilase. Appl Microbiol Biotechnol 34(3):322–324

    CAS  Google Scholar 

  • Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40(2-3):189–195

    Article  CAS  Google Scholar 

  • Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Kamiya N, Endo I (1998) Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nat Struct Mol Biol 5(5):347

    Article  CAS  Google Scholar 

  • Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M (2000) Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure 8(7):729–738

    Article  CAS  PubMed  Google Scholar 

  • Nigam VK, Arfi T, Kumar V, Shukla P (2017) Bioengineering of nitrilases towards its use as green catalyst: applications and perspectives. Indian J Microbiol 57(2):131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nojiri M, Nakayama H, Odaka M, Yohda M, Takio K, Endo I (2000) Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771. FEBS Lett 465(2–3):173–177

    Article  CAS  PubMed  Google Scholar 

  • O’mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O’reilly C (2005) Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ270 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie Van Leeuwenhoek 87(3):221–232

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki A, Murata K, Sato Y, Noguchi K, Miyatake H, Dohmae N, Yamada K, Yohda M, Odaka M (2010) Structure and characterization of amidase from Rhodococcus sp. N-771: insight into the molecular mechanism of substrate recognition. Biochim Biophys Acta 1804(1):184–192

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Eltis LD (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol 65(3):828–838

    Article  CAS  PubMed  Google Scholar 

  • Osprian I, Fechter MH, Griengl H (2003) Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxy carboxylic acids. J Mol Catal B Enzym 24:89–98

    Article  CAS  Google Scholar 

  • Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2(1):reviews0001. 0001

    Article  Google Scholar 

  • Park JM, Sewell BT, Benedik MJ (2017) Cyanide bioremediation: the potential of engineered nitrilases. Appl Microbiol Biotechnol 101(8):3029–3042

    Article  CAS  PubMed  Google Scholar 

  • Pertsovich S, Guranda D, Podchernyaev D, Yanenko A, Svedas V (2005) Aliphatic amidase from Rhodococcus rhodochrous M8 is related to the nitrilase/cyanide hydratase family. Biochem Mosc 70(11):1280–1287

    Article  CAS  Google Scholar 

  • Pogorelova TE, Ryabchenko LE, Sunzov NI, Yanenko AS (1996) Cobalt-dependent transcription of the nitrile hydratase gene in Rhodococcus rhodochrous M8. FEMS Microbiol Lett 144(2–3):191–195

    Article  CAS  Google Scholar 

  • Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28(6):725–741

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2007) A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23(3):345–353

    Article  CAS  Google Scholar 

  • Ramteke PW, Maurice NG, Joseph B, Wadher BJ (2013) Nitrile-converting enzymes: an eco-friendly tool for industrial biocatalysis. Biotechnol Appl Biochem 60(5):459–481

    Article  CAS  PubMed  Google Scholar 

  • Roach P, Ramsden D, Hughes J, Williams P (2003) Development of a conductimetric biosensor using immobilised Rhodococcus ruber whole cells for the detection and quantification of acrylonitrile. Biosens Bioelectron 19(1):73–78

    Article  CAS  PubMed  Google Scholar 

  • Roach P, Ramsden D, Hughes J, Williams P (2004) Biocatalytic scrubbing of gaseous acrylonitrile using Rhodococcus ruber immobilized in synthetic silicone polymer (ImmobaSil™) rings. Biotechnol Bioeng 85(4):450–455

    Article  CAS  PubMed  Google Scholar 

  • Rucká L, Volkova O, Pavlík A, Kaplan O, Kracík M, Nešvera J, Martínková L, Pátek M (2014) Expression control of nitrile hydratase and amidase genes in Rhodococcus erythropolis and substrate specificities of the enzymes. Antonie Van Leeuwenhoek 105(6):1179–1190

    Article  PubMed  CAS  Google Scholar 

  • Rzeznicka K, Schätzle S, Böttcher D, Klein J, Bornscheuer UT (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Appl Microbiol Biotechnol 85(5):1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Sakai N, Tajika Y, Yao M, Watanabe N, Tanaka I (2004) Crystal structure of hypothetical protein PH0642 from Pyrococcus horikoshii at 1.6 Å resolution. Proteins 57(4):869–873

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Yu H, Chen J, Luo H, Shen Z (2016a) Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase. J Ind Microbiol Biotechnol 43(12):1631–1639

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Zhu L, Chen X, Wu L, Zhou Z, Liu Y (2016b) The stability enhancement of nitrile hydratase from Bordetella petrii by swapping the C-terminal domain of β subunit. Appl Biochem Biotechnol 178(8):1481–1487

    Article  CAS  PubMed  Google Scholar 

  • Takihara H, Matsuura C, Ogihara J, Iwabuchi N, Sunairi M (2014) Rhodococcus rhodochrous ATCC12674 becomes alkane-tolerant upon GroEL2 overexpression and survives in the n-octane phase in two phase culture. Microbes Environ 29(4):431–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Han L, Li X, Han Y, Liu Z (2016) Molecular structure, spectroscopy (FT-IR, FT-Raman), thermodynamic parameters, molecular electrostatic potential and HOMO-LUMO analysis of 2, 6-dichlorobenzamide. J Mol Struct 1108:307–314

    Article  CAS  Google Scholar 

  • Thuku RN, Weber BW, Varsani A, Sewell BT (2007) Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274(8):2099–2108

    Article  CAS  PubMed  Google Scholar 

  • Thuku R, Brady D, Benedik M, Sewell B (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106(3):703–727

    Article  CAS  PubMed  Google Scholar 

  • Valiña ALB, Mazumder-Shivakumar D, Bruice TC (2004) Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate. Biochemistry 43(50):15657–15672

    Article  PubMed  CAS  Google Scholar 

  • Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG (2010) Developments in nitrile and amide biotransformation processes. Trends Biotechnol 28(11):561–569

    Article  CAS  PubMed  Google Scholar 

  • Veselá A, Franc M, Pelantová H, Kubáč D, Vejvoda V, Šulc M, Bhalla T, Macková M, Lovecká P, Janů P (2010) Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation 21(5):761–770

    Article  PubMed  CAS  Google Scholar 

  • Veselá AB, Pelantová H, Šulc M, Macková M, Lovecká P, Thimová M, Pasquarelli F, Pičmanová M, Pátek M, Bhalla TC (2012) Biotransformation of benzonitrile herbicides via the nitrile hydratase–amidase pathway in rhodococci. J Ind Microbiol Biotechnol 39(12):1811–1819

    Article  PubMed  CAS  Google Scholar 

  • Wang M-X (2005) Enantioselective biotransformations of nitriles in organic synthesis. Top Catal 35(1–2):117–130

    Article  CAS  Google Scholar 

  • Xiaobo X, Jianping L, Peilin C (2006) Advances in the research and development of acrylic acid production from biomass1. Chin J Chem Eng 14(4):419–427

    Article  Google Scholar 

  • Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60(9):1391–1400

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Mitsukura K, Mizutani T, Nakashima R, Shimizu Y, Kawabata H, Nagasawa T (2013) Enantioselective synthesis of (S)-2-cyano-2-methylpentanoic acid by nitrilase. Biotechnol Lett 35(5):685–688

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Huang H (2014) Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv 32(2):308–315

    Article  CAS  PubMed  Google Scholar 

  • Zhang L-B, Wang D-X, Wang M-X (2011) Microbial whole cell-catalyzed desymmetrization of prochiral malonamides: practical synthesis of enantioenriched functionalized carbamoylacetates and their application in the preparation of unusual α-amino acids. Tetrahedron 67(31):5604–5609

    Article  CAS  Google Scholar 

  • Zhou Z, Hashimoto Y, Shiraki K, Kobayashi M (2008) Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci USA 105(39):14849–14854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support via the projects NSFC-21776157/21476126 (the National Natural Science Foundation of China) and 973-2013CB733600 (the National Key Basic Research Project 973) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, H., Jiao, S., Wang, M., Liang, Y., Tang, L. (2019). Biodegradation of Nitriles by Rhodococcus . In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-11461-9_7

Download citation

Publish with us

Policies and ethics