Skip to main content
Log in

Enhancing Endo-nitrilase production by a newly isolated Arthrobacter nitroguajacolicus ZJUTB06-99 through optimization of culture medium

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The medium components of nitrilase production by Arthrobacter nitroguajacolicus ZJUTB06-99 were optimized in this study. Effects of factors such as carbon sources, nitrogen sources, and inducers on nitrilase production were investigated. Glucose, yeast extract, and ε-caprolactam were chosen as the suitable components. Moreover, experiments were carried out to fix the concentration of three factors for the zero coded level of variables in the subsequent optimization. Response surface methodology (RSM) and central composite design (CCD) were employed for further optimization. A quadratic model was found to fit the nitrilase activity and the variables. The results revealed that the optimized medium contained (%, w/v) 2.80, glucose; 0.57, yeast extract; and 0.42, ε-caprolactam. Validation experiments were carried out under the optimized conditions and nitrilase activity of 107.49 U/L was close to the predicted activity 110.82 U/L. After optimization, the nitrilase activity attained 2.86 fold of activity compared to the unoptimized conditions and the conversion of acrylonitrile was significantly improved. The strain growth curve and nitrilase activity alteration in the course of culture were tested. The cells were suitably harvested after cultured for 72∼78 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, Q., A. Fan, Y. S. Wang, X. Q. Zhu, Z. Wang, M. H. Wu, and Y. G. Zheng (2007) Novel sensitive high-throughput screening strategy for nitrilase-producing strains. Appl. Environ. Microbiol. 73: 6053–6057.

    Article  CAS  Google Scholar 

  2. Zheng, Y. G., J. Chen, Z. Q. Liu, M. H. Wu, L. Y. Xing, and Y. C. Shen (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl. Microbiol. Biotechnol. 77: 985–993.

    Article  CAS  Google Scholar 

  3. Kaul, P., A. Banerjee, S. Mayilraj, and U. C. Banerjee (2004) Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(−)-mandelic acid by new bacterial isolates. Tetrahedron: Asymmetry 15: 207–211.

    Article  CAS  Google Scholar 

  4. Wang, Y. J., Y. G. Zheng, J. P. Xue, and Y. C. Shen (2006) Microbial transformation of indole-3-acetonitrile to indole-3-acetamide by Nocardia sp. 108. Process Biochem. 41: 1746–1750.

    Article  CAS  Google Scholar 

  5. Zheng, R. C., Y. G. Zheng, and Y. C. Shen (2007) A screening system for active and enantioselective amidase based on its acyl transfer activity. Appl. Microbiol. Biotechnol. 74: 256–262.

    Article  CAS  Google Scholar 

  6. Chen, J., Y. G. Zheng, and Y. C Shen (2008) Biosynthesis of p-methoxyphenylacetic acid from p-methoxyphenylacetonitrile by immobilized Bacillus subtilis ZJB-063. Process Biochem. 43: 978–983.

    Article  CAS  Google Scholar 

  7. Naik, S. C., P. Kaul, and B. Barse (2008) Studies on the production of enantio selective nitrilase in a stirred tank bioreactor by Pseudomonas putida MTCC 5110. Bioresour. Technol. 99: 26–31.

    Article  CAS  Google Scholar 

  8. Liang, L. Y., Y. G. Zheng, and Y. C. Shen (2008) Optimization of b-alanine production from b-aminopropionitrile by resting cells of Rhodococcus sp. G20 in a bubble column reactor using response surface methodology. Process Biochem. 43: 758–764.

    Article  CAS  Google Scholar 

  9. Benz, P., R. Muntwyler, and R. Wohlgemuth (2007) Chemoenzymatic synthesis of chiral carboxylic acids via nitriles. J. Chem. Technol. Biotechnol. 82: 1087–1098.

    Article  CAS  Google Scholar 

  10. Vejvoda, V., O. Kaplan, and K. Bezouska (2008) Purification and characterization of a nitrilase from Fusarium solani O1. J. Mol. Catal. B: Enzym. 50: 99–106.

    Article  CAS  Google Scholar 

  11. Martinkova, L., V. Vejvoda, and V. Kren (2008) Selection and screening for enzymes of nitrile metabolism. J. Biotechnol. 133: 318–326.

    Article  CAS  Google Scholar 

  12. Mutalik, S. R., B. K. Vaidya, and R. M. Joshi (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour. Technol. 99: 7875–7880.

    Article  CAS  Google Scholar 

  13. Deepak, V., K. Kalishwaralal, and S. Ramkumarpandian (2008) Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresour. Technol. 99: 8170–8174.

    Article  CAS  Google Scholar 

  14. Liu, Z. Q., Z. C. Hu, Y. G. Zheng, and Y. C. Shen (2008) Optimization of cultivation conditions for the production of 1,3-dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochem. Eng. J. 38: 285–291.

    Article  CAS  Google Scholar 

  15. Liu, Z. Q., Y. Li, F. J. Cui, L. F. Ping, J. N. Song, Y. Ravee, L. Q. Jin, Y. P. Xue, J. M. Xu, G. Li, Y. J. Wang and Y. G. Zheng (2008) Optimization of production and characterization of enzyme-treated octenyl succinic anhydride modified waxy corn starch. J. Agric. Food Chem. 56: 11499–11506.

    Article  CAS  Google Scholar 

  16. Ren, J., W. T. Lin, and Y. J. Shen (2008) Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design. Bioresour. Technol. 99: 7923–7927.

    Article  CAS  Google Scholar 

  17. Zhou, X. X., Y. J. Pan, Y. B. Wang, and W. F. Li (2008) Optimization of medium composition for nisin fermentation with response surface methodology. J. Food Sci. 73: 245–249.

    Article  CAS  Google Scholar 

  18. Chen, J., Y. G. Zheng, and Y. C. Shen (2008) Biotransformation of p-methoxyphenylacetonitrile into p-methoxyphenylacetic acid by resting cells of Bacillus subtilis. Biotechnol. Appl. Biochem. 50: 147–153.

    Article  CAS  Google Scholar 

  19. Banerjee, A., P. Kaul, and U. C. Banerjee (2006) Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl. Microbiol. Biotechnol. 72: 77–87.

    Article  CAS  Google Scholar 

  20. Khandelwal, A. K., V. K. Nigam, and B. Choudhury (2007) Optimization of nitrilase production from a new thermophilic isolate. J. Chem. Technol. Biotechnol. 82: 645–651.

    Article  CAS  Google Scholar 

  21. Yamamoto, K. and K. Komatsu (1991) Purification and characterization of nitrilase responsible for the hydrolysis from Acinetobacter sp. AK 226. Agric. Biol. Chem. 55: 1459–1466.

    CAS  Google Scholar 

  22. Almatawah, Q. A., R. Cramp, and D. A. Cowan (1999) Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles 3: 283–291.

    Article  CAS  Google Scholar 

  23. Nagasawa, T., T. Nakamura, and H. Yamada (1990) ɛ- caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch. Microbiol. 155: 13–17.

    Article  CAS  Google Scholar 

  24. Gao, Y. L. and X. R. Ju (2007) Statistical prediction of effects of food composition on reduction of Bacillus subtilis As 1.1731 spores suspended in food matrices treated with high pressure. J. Food Eng. 82: 68–76.

    Article  Google Scholar 

  25. Huang, W., Z. S. Li, and H. Niu (2008) Optimization of operating parameters for supercritical carbon dioxide extraction of lycopene by response surface methodology. J. Food Eng. 89: 298–302.

    Article  CAS  Google Scholar 

  26. Masmoudi, M., S. Besbes, and M. Chaabouni (2008) Optimization of pectin extraction from lemon byproduct with acidified date juice using response surface methodology. Carbohyd. Polym. 74: 185–192.

    Article  CAS  Google Scholar 

  27. Mauger, J., T. Nagasawa, and H. Yamada (1990) Occurrence of a novel nitrilase, arylacetonitrilase in Alcaligenes faecalis JM3. Arch. Microbiol. 155: 1–6.

    Article  CAS  Google Scholar 

  28. Yamamoto, K., K. Oishi, I. Fujimatsu, and K. I. Komatsu (1991) Production of (R)-(−)-Mandelic Acid from Mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57: 3028–3032.

    CAS  Google Scholar 

  29. Banerjee, A., P. Kaul, and U. C. Banerjee (2006) Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch. Microbiol. 184: 407–418.

    Article  CAS  Google Scholar 

  30. Nagasawa, T., M. Wieser, T. Nakamura, H. Iwahara, T. Yoshida, and K. Gekko (2000) Nitrilase of Rhodococcus rhodochrous J1; conversion into the active form by subunit association. Eur. J. Biochem. 267: 138–144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, M., Liu, ZQ., Zheng, YG. et al. Enhancing Endo-nitrilase production by a newly isolated Arthrobacter nitroguajacolicus ZJUTB06-99 through optimization of culture medium. Biotechnol Bioproc E 14, 795–802 (2009). https://doi.org/10.1007/s12257-008-0252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0252-8

Keywords

Navigation