Skip to main content

Advertisement

Log in

Fused filament fabrication: A state-of-the-art review of the technology, materials, properties and defects

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Fused filament fabrication (FFF) is one of the additive manufacturing (AM) techniques that have revolutionized the manufacturing strategy in the last 2 to 3 decades. The quality of the parts prepared by the FFF process is dependent upon the static and variable process parameters. It has been reported by previous studies that part shrinkage, part shrinkage, high surface roughness, warping from the edges, misaligned part geometry, lack and loss of the adhesion, part distortion, voids and porosity etc., are the major issues in the fused filament fabrication process. In the case of open-source fused filament fabrication, internal and external factors such as; the variable room temperatures, room humidity, wind speed, heterogeneity in feedstock materials, torsion in feedstock filaments, vibration due to any source, nozzle clogging, nozzle choking, high/low nozzle and bed temperature are conducive for the mentioned issues. The present study is the state of review for minimizing defects in the final product by suggesting the methods and procedure for each issue in the FFF process. This study would be helpful for novice researchers who are working on different applications of the FFF process. In this review work, most common defects and problems observed during 3D printing are elaborated and discussed according to literature review and also solution of defects has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Singh, R., et al.: Effect of single particle size, double particle size and triple particle size Al2O3 in Nylon-6 matrix on mechanical properties of feed stock filament for FDM. Compos. Part B: Eng. 106, 20–27 (2016)

    Article  Google Scholar 

  2. Moumen, E., Ahmed, M., Tarfaoui, Lafdi, K.: “Additive manufacturing of polymer composites: Processing and modeling approaches.“. Compos. Part B: Eng. 171, 166–182 (2019)

    Article  Google Scholar 

  3. Moury, B., Cécile, D.: “Host range evolution of potyviruses: A global phylogenetic analysis.“ Viruses 12, no. 1 : p. 111. (2020)

  4. Bansal, G., et al.: “Microstructural characterization, applications and process study of various additive manufacturing process: a review.“ Materials Today: Proceedings (2020)

  5. Haleem, A., Javaid, M.: 3D printed medical parts with different materials using additive manufacturing. Clin. Epidemiol. Global Health. 8(1), 215–223 (2020)

    Article  Google Scholar 

  6. Sivarupan, T., et al.: “Reduced consumption of materials and hazardous chemicals for energy efficient production of metal parts through 3D printing of sand molds.“Journal of cleaner production224: pp. 411–420. (2019)

  7. Szymczyk, P., et al.: “A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques.“Biocybernetics and Biomedical Engineering(2020)

  8. Fasel, U., et al.: “Composite additive manufacturing of morphing aerospace structures.“. Manuf. Lett. 23, 85–88 (2020)

    Article  Google Scholar 

  9. Wang, D., et al.: Research on design optimization and manufacturing of coating pipes for automobile seal based on selective laser melting. J. Mater. Process. Technol. 273, 116227 (2019)

    Article  Google Scholar 

  10. Virgin, L.N.: “Enhancing the teaching of elastic buckling using additive manufacturing. " Eng. Struct. 174, 338–345 (2018)

    Article  Google Scholar 

  11. Liu, B., et al.: Creating metal parts by fused deposition modeling and sintering. Mater. Lett. 263, 127252 (2020)

    Article  Google Scholar 

  12. Juskova, P., et al.: “Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: Application to microfluidic deterministic lateral displacement device.“Analytica chimica acta1000: pp. 239–247. (2018)

  13. Elsayed, H., et al.: “Novel bioceramics from digital light processing of calcite/acrylate blends and low temperature pyrolysis.“Ceramics International(2020)

  14. Liu, K., et al.: Effects of raw material ratio and post-treatment on properties of soda lime glass-ceramics fabricated by selective laser sintering. Ceram. Int. 46, 13 (2020)

    Google Scholar 

  15. Zhao, R., et al.: “Selective laser melting of elemental powder blends for fabrication of homogeneous bulk material of near-eutectic Ni–Sn composition.“Additive Manufacturing: p.101261. (2020)

  16. Shu, X., Wang, R.: Thermal residual solutions of beams, plates and shells due to laminated object manufacturing with gradient cooling. Compos. Struct. 174, 366–374 (2017)

    Article  Google Scholar 

  17. Wong, H., et al.: Material characterisation using electronic imaging for Electron Beam Melting process monitoring. Manuf. Lett. 23, 44–48 (2020)

    Article  Google Scholar 

  18. Heidari-Rarani, Mohammad, M., Rafiee-Afarani, Zahedi, A.M.: Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos. Part B: Eng. 175, 107147 (2019)

    Article  Google Scholar 

  19. Jakus, A.E.: “An Introduction to 3D Printing—Past, Present, and Future Promise.“ 3D Printing in Orthopaedic Surgery, pp. 1–15. Elsevier (2019)

  20. Nofar, M.: and Chul B. Park. Polylactide Foams: Fundamentals, Manufacturing, and Applications. William Andrew (2017)

  21. Khabia, S., Kamlesh, K., Jain: “Influence of change in layer thickness on mechanical properties of components 3D printed on Zortrax M 200 FDM printer with Z-ABS filament material & Accucraft i250 + FDM printer with low cost ABS filament material.“ Materials Today: Proceedings (2020)

  22. Sodeifian, G., Ghaseminejad, S.: “Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament. Results in Physics. 12, 205–222 (2019)

    Article  Google Scholar 

  23. Garzon-Hernandez, S., et al.: Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties. Mater. Design. 188, 108414 (2020)

    Article  Google Scholar 

  24. Rahman, H., et al.: “Investigation on the Scale Factor applicable to ABS based FDM Additive Manufacturing.“ Materials Today: Proceedings 5.1 : pp. 1640–1648. (2018)

  25. Kerekes, T., Webbe, et al.: Characterization of process–deformation/damage property relationship of fused deposition modeling (FDM) 3D-printed specimens. Additive Manuf. 25, 532–544 (2019)

    Article  Google Scholar 

  26. Araya-Calvo, M., et al.: Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology. Additive Manuf. 22, 157–164 (2018)

    Article  Google Scholar 

  27. Riddick, J.C., et al.: Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling. Additive Manuf. 11, 49–59 (2016)

    Article  Google Scholar 

  28. McLouth, T.D., et al.: The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS. Additive Manuf. 18, 103–109 (2017)

    Article  Google Scholar 

  29. Liu, Z., Xing, S.: Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. J. Mater. Res. Technol. 8(5), 3741–3751 (2019)

    Article  Google Scholar 

  30. Abdullah, A., Manaf, et al.: “Mechanical and physical properties of highly ZrO2/β-TCP filled polyamide 12 prepared via fused deposition modelling (FDM) 3D printer for potential craniofacial reconstruction application.“. Mater. Lett. 189, 307–309 (2017)

    Article  Google Scholar 

  31. Lay, M., et al.: Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos. Part B: Eng. 176, 107341 (2019)

    Article  Google Scholar 

  32. Singh, R., et al.: Investigation for surface finish improvement of FDM parts by vapor smoothing process. Compos. Part B: Eng. 111, 228–234 (2017)

    Article  Google Scholar 

  33. Niknam, H., et al.: “3D Printed Accordion-like Materials: A Design Route to Achieve Ultrastretchability.“Additive Manufacturing: p.101215. (2020)

  34. Guerrero-de-Mier, A., Espinosa, M.M., Domínguez, M.: Bricking: A new slicing method to reduce warping. Procedia Eng. 132, 126–131 (2015)

    Article  Google Scholar 

  35. Minetola, P., Galati, M.: A challenge for enhancing the dimensional accuracy of a low-cost 3D printer by means of self-replicated parts. Additive Manuf. 22, 256–264 (2018)

    Article  Google Scholar 

  36. Elsholtz, C., Harper, A.: Additive decompositions of sets with restricted prime factors. Trans. Am. Math. Soc. 367(10), 7403–7427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Allen, R.J.A.: Trask. “An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot. Additive Manuf. 8, 78–87 (2015)

    Article  Google Scholar 

  38. Coasey, K., et al.:“Nonisothermal Welding in Fused Filament Fabrication.“ Additive Manufacturing: p.101140. (2020)

  39. Lee, C.-Y., Chung-Yin, L.: The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication. Additive Manuf. 25, 196–203 (2019)

    Article  Google Scholar 

  40. Shariatnia, S., et al.: Atomization of cellulose nanocrystals aqueous suspensions in fused deposition modeling: A scalable technique to improve the strength of 3D printed polymers. Compos. Part B: Eng. 177, 107291 (2019)

    Article  Google Scholar 

  41. Hussey, B., et al.: Light-weight/defect-tolerant topologically self-interlocking polymeric structure by fused deposition modeling. Compos. Part B: Eng. 183, 107700 (2020)

    Article  Google Scholar 

  42. Chohan, J., Singh, et al.: Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos. Part B: Eng. 117, 138–149 (2017)

    Article  Google Scholar 

  43. Nober, C., et al.: Feasibility study into the potential use of fused-deposition modeling to manufacture 3D-printed enteric capsules in compounding pharmacies. Int. J. Pharm. 569, 118581 (2019)

    Article  Google Scholar 

  44. Ilyés, K., et al.: “The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: Material considerations–printability–process modulation, with consecutive effects on in vitro release, stability and degradation.“. Eur. J. Pharm. Sci. 129, 110–123 (2019)

    Article  Google Scholar 

  45. Gebreyes, W.A., et al.: An integrated fluidic electrochemical sensor manufactured using fused filament fabrication and supersonic cluster beam deposition. Sens. Actuators A: Phys. 301, 111706 (2020)

    Article  Google Scholar 

  46. Chohan, J., Singh, R., Singh, Kamaljit Singh, B.: Mathematical modelling of surface roughness for vapour processing of ABS parts fabricated with fused deposition modelling. J. Manuf. Process. 24, 161–169 (2016)

    Article  Google Scholar 

  47. Palmero, E.M., et al.: “Composites based on metallic particles and tuned filling factor for 3D-printing by Fused Deposition Modeling.“ Composites Part. Appl. Sci. Manuf. 124, 105497 (2019)

    Article  Google Scholar 

  48. Puigoriol-Forcada, J.M., et al.: Flexural fatigue properties of polycarbonate fused-deposition modelling specimens. Mater. Design. 155, 414–421 (2018)

    Article  Google Scholar 

  49. de Toro, E., Verdejo, et al.: “Analysis of the influence of the variables of the Fused Deposition Modeling (FDM) process on the mechanical properties of a carbon fiber-reinforced polyamide. " Procedia Manufacturing. 41, 731–738 (2019)

    Article  Google Scholar 

  50. Ranjan, N., Singh, R., Inderpreet, S., Ahuja: “Preparation of partial denture with nano HAp-PLA composite under cryogenic grinding environment using 3D printing.“ :517–522. (2020)

  51. Kuki, Ã., et al.: Fast identification of phthalic acid esters in poly (vinyl chloride) samples by direct analysis in real time (DART) tandem mass spectrometry. Int. J. Mass Spectrom. 303, 2–3 (2011)

    Article  Google Scholar 

  52. Kousiatza, C., Karalekas, D.: In-situ monitoring of strain and temperature distributions during fused deposition modeling process. Mater. Design. 97, 400–406 (2016)

    Article  Google Scholar 

  53. Guo, R., et al.: “Effect of toughening agents on the properties of poplar wood flour/poly (lactic acid) composites fabricated with fused deposition modeling.“. Eur. Polymer J. 107, 34–45 (2018)

    Article  Google Scholar 

  54. Waran, V., et al.: Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J. Neurosurg. 120(2), 489–492 (2014)

    Article  Google Scholar 

  55. Ranjan, N., Singh, R.: and I. P. S. Ahuja. “Investigations on joining of orthopaedic scaffold with rapid tooling.“ Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 233, no. 7 : 754–760. (2019)

  56. Madamesila, J., et al.: Characterizing 3D printing in the fabrication of variable density phantoms for quality assurance of radiotherapy. Physica Med. 32(1), 242–247 (2016)

    Article  Google Scholar 

  57. Pringle, A.M., Rudnicki, M., Joshua, M.: Pearce. “Wood Furniture Waste–Based Recycled 3-D Printing Filament.“. For. Prod. J. 68(1), 86–95 (2018)

    Google Scholar 

  58. Mueller, S., et al.: “WirePrint: 3D printed previews for fast prototyping.“ Proceedings of the 27th annual ACM symposium on User interface software and technology. (2014)

  59. Singh, R., Kumar, R., Ranjan, N.: Sustainability of recycled ABS and PA6 by banana fiber reinforcement: thermal, mechanical and morphological properties. J. Institution Eng. (India): Ser. C. 100(2), 351–360 (2019)

    Article  Google Scholar 

  60. Deshpande, S., Prashant, et al.: “DEVELOPING AN OPEN SOURCE, INEXPENSIVE, LARGE-SCALE POLAR CONFIGURATION 3D PRINTER.“International Journal of Engineering Research & Innovation: p.13. (2019)

  61. Straub, J.: “Initial work on the characterization of additive manufacturing (3D printing) using software image analysis.“ Machines 3.2 : pp. 55–71. (2015)

  62. Schmitt, B., Madeira, et al.: “A comparative study of cartesian and delta 3D printers on producing PLA parts.“. Mater. Res. 20, 883–886 (2017)

    Article  Google Scholar 

  63. Salentijn, G.I.J., et al.: Fused deposition modeling 3D printing for (bio) analytical device fabrication: procedures, materials, and applications. Anal. Chem. 89, 13 (2017)

    Article  Google Scholar 

  64. Fafenrot, S., et al.: Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials. 10(10), 1199 (2017)

    Article  Google Scholar 

  65. Motyl, B., et al.: “How will change the future engineers’ skills in the Industry 4.0 framework? A questionnaire survey.“. Procedia Manuf. 11, 1501–1509 (2017)

    Article  Google Scholar 

  66. Vélez, M., Toala, E., Juan Cristóbal, Z.: Koala 3D: A continuous climbing 3D printer. Robot. Comput. Integr. Manuf. 64, 101950 (2020)

    Article  Google Scholar 

  67. Asif, M., et al.: “A new photopolymer extrusion 5-axis 3D printer.“. Additive Manuf. 23, 355–361 (2018)

    Article  Google Scholar 

  68. Zi, B., et al.: Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer. Mech. Mach. Theory. 132, 207–222 (2019)

    Article  Google Scholar 

  69. Zhang, Z., Shao, Z., Wang, L.: Optimization and implementation of a high-speed 3-DOFs translational cable-driven parallel robot. Mech. Mach. Theory. 145, 103693 (2020)

    Article  Google Scholar 

  70. Yuan, H., Deblaise, D.: Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity. Mech. Mach. Theory. 85, 64–81 (2015)

    Article  Google Scholar 

  71. Alikhani, A., et al.: “Workspace analysis of a three DOF cable-driven mechanism.“Journal of Mechanisms and Robotics1.4 (2009)

  72. Sun, J., et al.: Extrusion-based food printing for digitalized food design and nutrition control. J. Food Eng. 220, 1–11 (2018)

    Article  Google Scholar 

  73. Sun, J., et al.: “3D Food Printing: Perspectives.“ Polymers for Food Applications, pp. 725–755. Springer, Cham (2018)

    Book  Google Scholar 

  74. Hager, I., Golonka, A., Putanowicz, R.: “3D printing of buildings and building components as the future of sustainable construction? " Procedia Engineering. 151, 292–299 (2016)

    Article  Google Scholar 

  75. McClinton, E., Wylie, B., Carl, A., Moore Jr.: “Creating a High and Homogenous Resolution Workspace for SCARA Based 3D Printers.“ IOP Conference Series: Materials Science and Engineering. Vol. 689. No. 1. IOP Publishing, (2019)

  76. Ogulmuş, A., Saygın, A., Çakan: “Modeling And Position Control Of Scara Type 3D Printer.“. Int. J. Sci. Technol. Res. 5, 140–143 (2016)

    Google Scholar 

  77. Wang, L., Jing, Liu: Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Sci. China Technological Sci. 57(9), 1721–1728 (2014)

    Article  Google Scholar 

  78. Pietrzak, K., Isreb, A., Mohamed, A.: Alhnan. “A flexible-dose dispenser for immediate and extended-release 3D printed tablets. Eur. J. Pharm. Biopharm. 96, 380–387 (2015)

    Article  Google Scholar 

  79. Gu, J., et al.: Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environ. Int. 123, 476–485 (2019)

    Article  Google Scholar 

  80. Xia, M., Nematollahi, B., Sanjayan, J.: Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications. Autom. Constr. 101, 179–189 (2019)

    Article  Google Scholar 

  81. Kreiger, M., Joshua, M., Pearce: ACS Sustain. Chem. Eng. 1(12), 1511–1519 (2013). “Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products.“

  82. Le Duigou, A., et al.: 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater. Design. 96, 106–114 (2016)

    Article  Google Scholar 

  83. Kariz, M., Sernek, M., Manja Kitek Kuzman: Effect of humidity on 3D-printed specimens from wood-PLA filaments. Wood Res. 63, 917–922 (2018)

    Google Scholar 

  84. Tan, J.C., Low, H.Y.: Embedded electrical tracks in 3D printed objects by fused filament fabrication of highly conductive composites. Additive Manuf. 23, 294–302 (2018)

    Article  Google Scholar 

  85. Ivey, M., et al.: Characterizing short-fiber-reinforced composites produced using additive manufacturing. Adv. Manufacturing: Polym. Compos. Sci. 3(3), 81–91 (2017)

    Google Scholar 

  86. Mbow, M., Mansour, P.R., Marin, Franck Pourroy: and. “Extruded diameter dependence on temperature and velocity in the fused deposition modeling process.“Progress in Additive Manufacturing: pp.1–14. (2020)

  87. Squires, A.D., Lewis, R.A.: Feasibility and characterization of common and exotic filaments for use in 3D printed terahertz devices. J. Infrared Millim. Terahertz Waves. 39, 7 (2018)

    Article  Google Scholar 

  88. Halidi, M.: Effects Of Moisture On Acrylonitrile Butadiene Styrene (Abs) Filament Material. In: Fused Deposition Modeling (Fdm) Rapid Prototyping Machine. Diss. Universiti Sains Malaysia (2013)

  89. Carneiro, O.S., Silva, A.F.: and Rui Gomes. “Fused deposition modeling with polypropylene.“ Materials & Design. 83, 768–776 (2015)

    Google Scholar 

  90. Zhou, Y., et al.: From 3D to 4D printing: approaches and typical applications. J. Mech. Sci. Technol. 29(10), 4281–4288 (2015)

    Article  Google Scholar 

  91. Ionita, C.N., et al.: “Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing.“ Medical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 9038. International Society for Optics and Photonics (2014)

  92. Kroll, E., Artzi, D.: “Enhancing aerospace engineering students’ learning with 3D printing wind-tunnel models.“Rapid Prototyping Journal(2011)

  93. Yuan, P.F., et al.: “Robotic multi-dimensional printing based on structural performance.“ Robotic Fabrication in Architecture, Art and Design 2016, pp. 92–105. Springer, Cham (2016)

    Book  Google Scholar 

  94. Sanjayan, J.G., et al.: Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr. Build. Mater. 172, 468–475 (2018)

    Article  Google Scholar 

  95. Klodowski, A., Eskelinen, H., Scott Semken: and. “Leakage-proof nozzle design for RepRap community 3D printer.“ Robotica 33.4 : p.721. (2015)

  96. Ramani, K., Borgaonkar, H., Hoyle, C.: Experiments on compression moulding and pultrusion of thermoplastic powder impregnated towpregs. Compos. Manuf. 6(1), 35–43 (1995)

    Article  Google Scholar 

  97. Heckele, M., Schomburg, W.K.: Review on micro molding of thermoplastic polymers. J. Micromech. Microeng. 14(3), R1 (2003)

    Article  Google Scholar 

  98. Wang, D., Bor-Sen Chiou: A high‐throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol. Mater. Eng. 292(4), 407–414 (2007)

    Article  Google Scholar 

  99. Thunwall, M., Boldizar, A., Mikael Rigdahl: “Compression molding and tensile properties of thermoplastic potato starch materials.“ Biomacromolecules. 7(3), 981–986 (2006)

    Google Scholar 

  100. Kishi, H., et al.: Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Compos. Sci. Technol. 64, 2517–2523 (2004)

    Article  Google Scholar 

  101. Bader, M.G., Bowyer, W.H.: The mechanical properties of thermoplastics strengthened by short discontinuous fibres. J. Phys. D. 5(12), 2215 (1972)

    Article  Google Scholar 

  102. Starosolski, Z.A., et al.: Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders. Pediatr. Radiol. 44(2), 216–221 (2014)

    Article  Google Scholar 

  103. Dry, C.: Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 35(3), 263–269 (1996)

    Article  Google Scholar 

  104. Tham, L.M., Gupta, M., Cheng, L.: Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Mater. 49, 16 (2001)

    Article  Google Scholar 

  105. WU, Xing-chao, and, He-guo, Z.H.U.: “Progress of Preparation Technology of Silicon Carbide Particle Reinforced Aluminum Matrix Composites [J].“Shanghai Nonferrous Metals3 (2012)

  106. Murphy, C.A., Maurice, N.: Collins. “Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing.“. Polym. Compos. 39(4), 1311–1320 (2018)

    Article  Google Scholar 

  107. Zhang, D., et al.: “Fabrication of highly conductive graphene flexible circuits by 3D printing.“. Synth. Met. 217, 79–86 (2016)

    Article  Google Scholar 

  108. Zhang, Q., Gao, Y., Jing, Liu: Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl. Phys. A. 116(3), 1091–1097 (2014)

    Article  Google Scholar 

  109. Woirgard, J., et al.: Study of the mechanical properties of ceramic materials by the nanoindentation technique. J. Eur. Ceram. Soc. 18, 15 (1998)

    Article  Google Scholar 

  110. Abdrakhimov, V.Z., Abdrakhimova, E.S.: Study of phase composition of ceramic materials based on nonferrous metallurgy, chemical, and petrochemical industry aluminum-containing waste. Refract. Ind. Ceram. 56(1), 5–10 (2015)

    Article  Google Scholar 

  111. Kalita, S.J., Bhardwaj, A., Himesh, A., Bhatt: “Nanocrystalline calcium phosphate ceramics in biomedical engineering.“ Materials Science and Engineering: C. 27(3), 441–449 (2007)

    Google Scholar 

  112. Leigh, S.J., et al.: “A simple, low-cost conductive composite material for 3D printing of electronic sensors.“. PloS one. 7(11), e49365 (2012)

    Article  Google Scholar 

  113. Froes, F., Boyer, R., Dutta, B.: “Introduction to aerospace materials requirements and the role of additive manufacturing.“ Additive manufacturing for the aerospace industry, pp. 1–6. Elsevier (2019)

  114. Lombardi, J.L., et al.: “Issues associated with EFF & FDM ceramic filled feedstock formulation.“ 1997 International Solid Freeform Fabrication Symposium. (1997)

  115. Eckel, Z.C., et al.: “Additive manufacturing of polymer-derived ceramics. " Sci. 351, 6268 (2016)

    Google Scholar 

  116. Hwang, S., et al.: Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 44(3), 771–777 (2015)

    Article  Google Scholar 

  117. Mellin, P., et al.: Nano-sized by-products from metal 3D printing, composite manufacturing and fabric production. J. Clean. Prod. 139, 1224–1233 (2016)

    Article  Google Scholar 

  118. Vanderploeg, A., Lee, S.-E., Mamp, M.: The application of 3D printing technology in the fashion industry. Int. J. Fashion Des. Technol. Educ. 10(2), 170–179 (2017)

    Article  Google Scholar 

  119. Debroy, T., et al.: “Scientific, technological and economic issues in metal printing and their solutions.“Nature materials: p.1. (2019)

  120. Sames, W.J., et al.: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016)

    Article  Google Scholar 

  121. Panicker, C.T., Justus, C., Boopathi, Vivekanandan, R.: “Comparing the Geometrical Accuracy of a 3D Printed Pattern to a Metal Pattern.“ IOP Conference Series: Materials Science and Engineering. Vol. 561. No. 1. IOP Publishing, (2019)

  122. Godoi, F.C., Prakash, S., Bhesh, R., Bhandari: 3d printing technologies applied for food design: Status and prospects. J. Food Eng. 179, 44–54 (2016)

    Article  Google Scholar 

  123. Sun, J., et al.: A review on 3D printing for customized food fabrication. Procedia Manuf. 1, 308–319 (2015)

    Article  Google Scholar 

  124. Lanaro, M., et al.: 3D printing complex chocolate objects: Platform design, optimization and evaluation. J. Food Eng. 215, 13–22 (2017)

    Article  Google Scholar 

  125. Liu, Z., et al.: Impact of rheological properties of mashed potatoes on 3D printing. J. Food Eng. 220, 76–82 (2018)

    Article  Google Scholar 

  126. Sun, J., et al.: “An overview of 3D printing technologies for food fabrication.“ Food and bioprocess technology 8.8 : pp. 1605–1615. (2015)

  127. Kumar, S., et al.: Investigations for mechanical, thermal and magnetic properties of polymeric composite matrix for four-dimensional printing applications. J. Brazilian Soc. Mech. Sci. Eng. 42(4), 1–15 (2020)

    Article  Google Scholar 

  128. Kang, H.-W., et al.: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3), 312–319 (2016)

    Article  Google Scholar 

  129. Cui, H., et al.: 3D bioprinting for organ regeneration. Adv. Healthc. Mater. 6(1), 1601118 (2017)

    Article  Google Scholar 

  130. Lee, J., Min: and Wai Yee Yeong. “Design and printing strategies in 3D bioprinting of cell-hydrogels: A review.“ Advanced healthcare materials 5.22 : pp. 2856–2865. (2016)

  131. Ning, L., Chen, X.: “A brief review of extrusion-based tissue scaffold bio‐printing. " Biotechnol. J. 12, 1600671 (2017)

    Article  Google Scholar 

  132. Li, J., et al.: Recent advances in bioprinting techniques: approaches, applications and future prospects. J. translational Med. 14(1), 271 (2016)

    Article  Google Scholar 

  133. Pourchet, L.J., et al.: Human skin 3D bioprinting using scaffold-free approach. Adv. Healthc. Mater. 6(4), 1601101 (2017)

    Article  Google Scholar 

  134. Yang, D., et al.: “Fibre flow and void formation in 3D printing of short-fibre reinforced thermoplastic composites: An experimental benchmark exercise.“Additive Manufacturing: p.101686. (2020)

  135. Gavali, V.C., Pravin, R., Kubade, Hrushikesh, B.: Kulkarni. “Mechanical and Thermo-mechanical Properties of Carbon fiber Reinforced Thermoplastic Composite Fabricated Using Fused Deposition Modeling Method.“ Materials Today: Proceedings 22 : pp. 1786–1795. (2020)

  136. Cowley, A., et al.: Effects of variable gravity conditions on additive manufacture by fused filament fabrication using polylactic acid thermoplastic filament. Additive Manuf. 28, 814–820 (2019)

    Article  Google Scholar 

  137. Lee, J., et al.: “Fabrication of poly (lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)–based 3D printing.“. Additive Manuf. 30, 100883 (2019)

    Article  Google Scholar 

  138. Goulas, A., et al.: “Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices.“Materials & Design: p.108871. (2020)

  139. Chueh, Y.-H., et al.: Integrated laser-based powder bed fusion and fused filament fabrication for three-dimensional printing of hybrid metal/polymer objects. Additive Manuf. 31, 100928 (2020)

    Article  Google Scholar 

  140. Lee, G., et al.: Fabrication of ceramic bone scaffolds by solvent jetting 3D printing and sintering: towards load-bearing applications. Additive Manuf. 33, 101107 (2020)

    Article  Google Scholar 

  141. Sudan, K., et al.: “Processing of hydroxyapatite and its composites using ceramic fused filament fabrication (CF3).“ Ceramics International 46.15 : pp.23922–23931. (2020)

  142. De León, A.S., Domínguez-Calvo, A., Molina, S.I.: Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF). Mater. Design. 182, 108044 (2019)

    Article  Google Scholar 

  143. Gibson, M.A., et al.: 3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses. Mater. Today. 21, 697–702 (2018)

    Article  Google Scholar 

  144. Singh, G., et al.: “Copper extrusion 3D printing using metal injection moulding feedstock: analysis of process parameters for green density and surface roughness optimization.“Additive Manufacturing: p.101778. (2020)

  145. Lille, M., et al.: “Structural and textural characteristics of 3D-printed protein-and dietary fibre-rich snacks made of milk powder and wholegrain rye flour.“ Foods 9.11 : p. 1527. (2020)

  146. Derossi, A., et al.: Analyzing the effects of 3D printing process per se on the microstructure and mechanical properties of cereal food products. Innovative Food Science & Emerging Technologies. 66, 102531 (2020)

    Article  Google Scholar 

  147. Maniglia, B.C., et al.: “Dry heating treatment: A potential tool to improve the wheat starch properties for 3D food printing application.“. Food Res. Int. 137, 109731 (2020)

    Article  Google Scholar 

  148. Yang, J., et al.: “Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing.“Carbohydrate Polymers: p.116881. (2020)

  149. Singh, P., et al.: “Printability studies of Ti-6Al-4 V by metal fused filament fabrication (MF3).“International Journal of Refractory Metals and Hard Materials: p.105249. (2020)

  150. Alberts, E., et al.: “Impact of metal additives on particle emission profiles from a fused filament fabrication 3D printer.“. Atmos. Environ. 244, 117956 (2021)

    Article  Google Scholar 

  151. Gilmer, E.L., et al.: Model analysis of feedstock behavior in fused filament fabrication: Enabling rapid materials screening. Polymer. 152, 51–61 (2018)

    Article  Google Scholar 

  152. Ganesan, K., et al.: “Structural, Raman and photoluminescence studies on nanocrystalline diamond films: Effects of ammonia in feedstock.“Diamond and Related Materials: p.107872. (2020)

  153. Díaz-García, Ã., et al.: “Novel procedure for laboratory scale production of composite functional filaments for additive manufacturing.“. Mater. Today Commun. 24, 101049 (2020)

    Article  Google Scholar 

  154. Angelopoulos, P.M., Samouhos, M., Taxiarchou, M.: “Functional fillers in composite filaments for fused filament fabrication; a review.“ Materials Today: Proceedings (2020)

  155. Sikder, P., et al.: “Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing.“Dental Materials(2020)

  156. Geng, P., et al.: Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J. Manuf. Process. 37, 266–273 (2019)

    Article  Google Scholar 

  157. Parsons, P., et al.: “Fabrication of low dielectric constant composite filaments for use in fused filament fabrication 3D printing.“. Additive Manuf. 30, 100888 (2019)

    Article  Google Scholar 

  158. Singh, R., Singh, S., Mankotia, K.: “Development of ABS based wire as feedstock filament of FDM for industrial applications.“Rapid Prototyping Journal(2016)

  159. Ebel, E.: and Thorsten Sinnemann. “Fabrication of FDM 3D objects with ABS and PLA and determination of their mechanical properties.“ RTejournal 2014.1(2014)

  160. Wu, G., et al.: Solid freeform fabrication of metal components using fused deposition of metals. Mater. Design. 23(1), 97–105 (2002)

    Article  Google Scholar 

  161. Galantucci, L., Maria, et al.: Analysis of dimensional performance for a 3D open-source printer based on fused deposition modeling technique. Procedia Cirp. 28, 82–87 (2015)

    Article  Google Scholar 

  162. Stoof, D., Pickering, K.: Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Compos. Part B: Eng. 135, 110–118 (2018)

    Article  Google Scholar 

  163. Aho, J., et al.: Roadmap to 3D-printed oral pharmaceutical dosage forms: feedstock filament properties and characterization for fused deposition modeling. J. Pharm. Sci. 108(1), 26–35 (2019)

    Article  MathSciNet  Google Scholar 

  164. Asp, L.E., Coast, G.: Queensland, Australia : pp. 322–331. (1997)

  165. Bos, F.P., et al.: “3D printing concrete with reinforcement. In: High Tech Concrete: Where Technology and Engineering Meet, pp. 2484–2493. Springer, Cham (2018)

    Chapter  Google Scholar 

  166. Dumas, J.E., et al.: Synthesis and characterization of an injectable allograft bone/polymer composite bone void filler with tunable mechanical properties. Tissue Eng. Part A. 16, 8 (2010)

    Article  Google Scholar 

  167. Masood, S.H., Song, W.Q.: Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater. Design. 25, 7 (2004)

    Article  Google Scholar 

  168. Blok, L.G., et al.: An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manuf. 22, 176–186 (2018)

    Article  Google Scholar 

  169. Yakout, M., et al.: “The selection of process parameters in additive manufacturing for aerospace alloys.“. Int. J. Adv. Manuf. Technol. 92, 5–8 (2017)

    Article  Google Scholar 

  170. Boparai, K., Singh, R., Singh, Singh, H.: “Experimental investigations for development of Nylon6-Al-Al2O3 alternative FDM filament.“Rapid Prototyping Journal(2016)

  171. Kukla, C., et al.: “Properties for PIM Feedstocks Used in Fused Filament Fabrication.“ World PM2016-AM-Deposition Technologies (2016)

  172. Dave, H.K., et al.: “Open hole tensile testing of 3D printed parts using in-house fabricated PLA filament.“Rapid Prototyping Journal(2020)

  173. Mostafa, N., et al.: A study of melt flow analysis of an ABS-Iron composite in fused deposition modelling process. Tsinghua Sci. Technol. 14, 29–37 (2009)

    Article  Google Scholar 

  174. Wang, G., et al.: CHI Conference on Human Factors in Computing Systems. 2018. (2018)

  175. Corcione, C., Esposito, et al.: One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. J. Therm. Anal. Calorim. 134(1), 575–582 (2018)

    Article  Google Scholar 

  176. Widmer, M.S., et al.: Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials. 19, 1945–1955 (1998)

    Article  Google Scholar 

  177. Muller, M., Thomas, et al.: Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties. Compos. Sci. Technol. 71, 13 (2011)

    Article  Google Scholar 

  178. Benbow, J.J., Oxley, E.W., Bridgwater, J.: The extrusion mechanics of pastes—the influence of paste formulation on extrusion parameters. Chem. Eng. Sci. 42(9), 2151–2162 (1987)

    Article  Google Scholar 

  179. Turner, B.N., Strong, R., Scott, A.: Gold. “A review of melt extrusion additive manufacturing processes: I. Process design and modeling.“Rapid Prototyping Journal(2014)

  180. Ning, F., et al.: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B: Eng. 80, 369–378 (2015)

    Article  Google Scholar 

  181. Sa’ude, N., et al.: “Dynamic mechanical properties of copper-ABS composites for FDM feedstock.“. Int. J. Eng. Res. Appl. 3(3), 1257–1263 (2013)

    Google Scholar 

  182. Rhodes, C.G., Anthony, W.: Thompson. “The composition dependence of stacking fault energy in austenitic stainless steels. Metall. Trans. A. 8(12), 1901–1906 (1977)

    Article  Google Scholar 

  183. Gurland, J., Bardzil, P.: “Relation of strength, composition, and grain size of sintered WC-Co alloys.“ Jom 7.2 : pp.311–315. (1955)

  184. Alaimo, G., et al.: Influence of meso-structure and chemical composition on FDM 3D-printed parts. Compos. Part B: Eng. 113, 371–380 (2017)

    Article  Google Scholar 

  185. Suarez, H., Barlow, J.W., Paul, D.R.: Mechanical properties of ABS/polycarbonate blends. J. Appl. Polym. Sci. 29(11), 3253–3259 (1984)

    Article  Google Scholar 

  186. Bhambri, Y., et al.: Effect of composition and cooling rate on the transformation of α to γ phase in TiAl alloys. Mater. Sci. Engineering: A. 424(1–2), 361–365 (2006)

    Article  Google Scholar 

  187. Kumari, R., et al.: Fundamental studies on wood/cellulose-plastic composites: effects of composition and cellulose dimension on the properties of cellulose/PP composite. J. wood Sci. 53(6), 470–480 (2007)

    Article  Google Scholar 

  188. Leu, S.-Y., et al.: Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs). Constr. Build. Mater. 29, 120–127 (2012)

    Article  Google Scholar 

  189. Gardella, D., et al.: Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic-and cryosections. J. Neurosci. Methods. 124(1), 45–59 (2003)

    Article  Google Scholar 

  190. Nayak, R., Kumar, Venugopal, S.: “Prediction of shrinkage allowance for tool design of aluminium alloy (A356) investment casting.“ Materials Today: Proceedings 5.11 : pp. 24997–25005. (2018)

  191. Oktem, H., Erzurumlu, T.: “Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Mater. Design. 28(4), 1271–1278 (2007)

    Article  Google Scholar 

  192. Chen, M.-H., et al.: “Low shrinkage light curable nanocomposite for dental restorative material.“. Dent. Mater. 22(2), 138–145 (2006)

    Article  Google Scholar 

  193. Hernandez, D.D.: “Factors affecting dimensional precision of consumer 3D printing.“. Int. J. Aviat. Aeronaut. Aerosp. 2(4), 2 (2015)

    Google Scholar 

  194. Holt, E., Leivo, M.: Cracking risks associated with early age shrinkage. Cem. Concr. Compos. 26, 521–530 (2004)

    Article  Google Scholar 

  195. Zhang, H., et al.: Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Sci. Adv. 4(6), 8535 (2018)

    Article  Google Scholar 

  196. Correa, D., et al.: “3D-Printed Wood: Programming hygroscopic material transformations.“ 3D Printing and Additive Manufacturing 2.3 : pp.106–116. (2015)

  197. Abbott, N.J., Goodings, U.A.C.: “14-moisture absorption, density and swelling properties of nylon filaments.“Journal of the Textile Institute Transactions40.4 : pp. (1949). T232-T246.

  198. Dávila, J.L., et al.: Fabrication of PCL/β-TCP scaffolds by 3D mini‐screw extrusion printing. J. Appl. Polym. Sci. 133, 15 (2016)

    Article  Google Scholar 

  199. Konta, A., Alice, M., García-Piña, Dolores, R., Serrano: “Personalised 3D printed medicines: which techniques and polymers are more successful? " Bioeng. 4(4), 79 (2017)

    Google Scholar 

  200. Craveiro, F., et al.: “Customizing insulation material properties for building retrofitting: From infrared thermography to additive manufacturing.“ (2018)

  201. Polzin, C., Spath, S., Seitz, H.: “Characterization and evaluation of a PMMA-based 3D printing process.“Rapid Prototyping Journal(2013)

  202. Ćwikła, G., et al.: “The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts.“ IOP Conf. Ser. Mater. Sci. Eng. Vol. 227, 1 (2017)

    Google Scholar 

  203. Samykano, M., et al.: “Mechanical property of FDM printed ABS: influence of printing parameters.“. Int. J. Adv. Manuf. Technol. 102, 9–12 (2019)

    Article  Google Scholar 

  204. Rafai, N.H., Islam, M.N.: An investigation into dimensional accuracy and surface finish achievable in dry turning. Mach. Sci. Technol. 13(4), 571–589 (2009)

    Article  Google Scholar 

  205. Tiwary, V., Kumar, et al.: “Surface enhancement of FDM patterns to be used in rapid investment casting for making medical implants.“Rapid Prototyping Journal(2019)

  206. Shahrubudin, N., et al.: “Challenges of 3D printing technology for manufacturing biomedical products: A case study of Malaysian manufacturing firms.“ Heliyon 6.4 : p.e03734. (2020)

  207. Nazan, M.A., et al.: “Optimization of warping deformation in open source 3d printer using response surface method.“ Proceedings of Mechanical Engineering Research Day : pp. 71–72. (2016) (2016)

  208. Pei, E., et al.: “Multi-material additive and subtractive prosumer digital fabrication with a free and open-source convertible delta RepRap 3-D printer.“Rapid Prototyping Journal(2015)

  209. Baumann, F., Roller, D.: “Vision based error detection for 3D printing processes.“ MATEC web of conferences. Vol. 59. EDP Sciences, (2016)

  210. Sanatgar, R., Hashemi, C., Campagne, Nierstrasz, V.: Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Appl. Surf. Sci. 403, 551–563 (2017)

    Article  Google Scholar 

  211. Pilch, Z.: Jarosław Domin, and Andrzej Szłapa. “The impact of vibration of the 3D printer table on the quality of print.“ 2015 Selected Problems of Electrical Engineering and Electronics (WZEE). IEEE (2015)

  212. Spoerk, M., et al.: “Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication.“ Plastics. Rubber and Composites. 47(1), 17–24 (2018)

    Article  Google Scholar 

  213. Meyer, P., Döpke, C., Ehrmann, A.: Improving adhesion of three-dimensional printed objects on textile fabrics by polymer coating. J. Eng. Fibers Fabr. 14, 1558925019895257 (2019)

    Google Scholar 

  214. Tamburrino, F., Graziosi, S., Monica Bordegoni: The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study. Virtual and Physical Prototyping. 14(4), 316–332 (2019)

    Article  Google Scholar 

  215. Alsoufi, M.S., et al.: Experimental characterization of the influence of nozzle temperature in FDM 3D printed pure PLA and advanced PLA+. Am. J. Mech. Eng. 7(2), 45–60 (2019)

    Article  Google Scholar 

  216. Saluja, A., Xie, J., Fayazbakhsh, K.: A closed-loop in-process warping detection system for fused filament fabrication using convolutional neural networks. J. Manuf. Process. 58, 407–415 (2020)

    Article  Google Scholar 

  217. Alsoufi, M.S., Abdulrhman, E., Elsayed: How surface roughness performance of printed parts manufactured by desktop FDM 3D printer with PLA + is influenced by measuring direction. Am. J. Mech. Eng. 5(5), 211–222 (2017)

    Google Scholar 

  218. Qattawi, A.: and Muhammad Ali Ablat. “Design consideration for additive manufacturing: fused deposition modelling.“ Open Journal of Applied Sciences 7.6 : pp. 291–318. (2017)

  219. Anderegg, D.A., et al.: In-situ monitoring of polymer flow temperature and pressure in extrusion based additive manufacturing. Additive Manuf. 26, 76–83 (2019)

    Article  Google Scholar 

  220. Rackers, K.G.: and B. G. Thomas. “Clogging in continuous casting nozzles.“ Steelmaking Conference Proceedings. Vol. 78. IRON AND STEEL SOCIETY OF AIME, (1995)

  221. Tlegenov, Y., Wong, Y.S., Geok Soon Hong: “A dynamic model for nozzle clog monitoring in fused deposition modelling.“Rapid Prototyping Journal(2017)

  222. Ranjan, N., Singh, R., Ahuja, I.P.S.: Development of PLA-HAp-CS-based biocompatible functional prototype: a case study. J. Thermoplast. Compos. Mater. 33(3), 305–323 (2020)

    Article  Google Scholar 

  223. Ranjan, N., Singh, R., Ahuja, I.P.S., Kumar, R., Singh, D., Ramniwas, S., Verma, A.K., Mittal, D.: 3D printed scaffolds for tissue engineering applications: Mechanical, morphological, thermal, in-vitro and in-vivo investigations. CIRP J. Manufact. Sci. Technol. 32, 205–216 (2021)

    Article  Google Scholar 

  224. Kumar, R., Kumar, R.: “3D printing of food materials: A state of art review and future applications.“ Materials Today: Proceedings (2020)

  225. Tlegenov, Y., Wen Feng, L.: Nozzle condition monitoring in 3D printing. Robot. Comput. Integr. Manuf. 54, 45–55 (2018)

    Article  Google Scholar 

  226. Maloch, J., et al.: “Effect of processing parameters on mechanical properties of 3D printed samples.“ Materials Science Forum. Vol. 919. Trans Tech Publications Ltd, (2018)

  227. Sukindar, N., Aiman, et al.: “Analysis on temperature setting for extruding polylactic acid using open-source 3D printer.“ (2017)

  228. Valino, A.D., et al.: Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 98, 101162 (2019)

    Article  Google Scholar 

  229. Khan, M., Farhan, A., Alam, M.A., Siddiqui, M.S., Alam, Y., Rafat: Nehal Salik, and Ibrahim Al-Saidan. “Real-time defect detection in 3D printing using machine learning.“ Materials Today: Proceedings 42 : 521–528. (2021)

  230. Baumann, F., Roller, D.: “Vision based error detection for 3D printing processes.“ In MATEC web of conferences, vol. 59, p. 06003. EDP Sciences, (2016)

  231. Miyanaji, H., Momenzadeh, N., Li, Y.: Effect of printing speed on quality of printed parts in Binder Jetting Process. " Additive Manufacturing. 20, 1–10 (2018)

    Article  Google Scholar 

  232. Hergel, J.: and Sylvain Lefebvre. “Clean color: Improving multi-filament 3D prints.“ Computer Graphics Forum. Vol. 33. No. 2. (2014)

  233. Melocchi, A., et al.: 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J. Drug Deliv. Sci. Technol. 30, 360–367 (2015)

    Article  Google Scholar 

  234. Patel, D.M.: “Effects of infill patterns on time, surface roughness and tensile strength in 3D printing.“. Int. J. Eng. Dev. Res. 5, 566–569 (2017)

    Google Scholar 

  235. Fernandez-Vicente, M., et al.: “Effect of infill parameters on tensile mechanical behavior in desktop 3D printing.“ 3D printing and additive manufacturing 3.3 : pp.183–192. (2016)

  236. Torres, J., et al.: “Mechanical property optimization of FDM PLA in shear with multiple objectives.“ Jom 67.5 : pp.1183–1193. (2015)

  237. Alsoufi, M.S., Abdulrhman, E., Elsayed: Surface roughness quality and dimensional accuracy—a comprehensive analysis of 100% infill printed parts fabricated by a personal/desktop cost-effective FDM 3D printer. Mater. Sci. Appl. 9(1), 11–40 (2018)

    Google Scholar 

  238. Aliheidari, N., et al.: “The impact of nozzle and bed temperatures on the fracture resistance of FDM printed materials.“ Behavior and Mechanics of Multifunctional Materials and Composites 2017, vol. 10165. International Society for Optics and Photonics (2017)

  239. Rajpurohit, S.R., Harshit, K.: Dave. “Effect of process parameters on tensile strength of FDM printed PLA part.“Rapid Prototyping Journal(2018)

  240. Akhoundi, B., Behravesh, A.H.: “Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products.“. Exp. Mech. 59(6), 883–897 (2019)

    Article  Google Scholar 

  241. Wang, P., et al.: Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J. Mater. Process. Technol. 271, 62–74 (2019)

    Article  Google Scholar 

  242. Kim, M., Kyung, I.H., Lee, Ho-Chan, K.: “Effect of fabrication parameters on surface roughness of FDM parts.“. Int. J. Precis. Eng. Manuf. 19(1), 137–142 (2018)

    Article  Google Scholar 

  243. Akhoundi, B., et al.: An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High-Temperature Polylactic Acid in Fused Deposition Modeling. Polym. Eng. Sci. 60(5), 979–987 (2020)

    Article  Google Scholar 

  244. Alsoufi, M.S., Elsayed, A.E.: Warping deformation of desktop 3D printed parts manufactured by open-source fused deposition modeling (FDM) system. Int. J. Mech. Mechatronics Eng. 17(4), 7–16 (2017)

    Google Scholar 

  245. Mohamed, O., Ahmed, et al.: Effect of process parameters on dynamic mechanical performance of FDM PC/ABS printed parts through design of experiment. J. Mater. Eng. Perform. 25, 7 (2016)

    Article  Google Scholar 

  246. Vesely, P.: “Nozzle Temperature effect on 3D printed structure properties.“ (2019)

  247. Calignano, F., Galati, M., Iuliano, L.: “A metal powder bed fusion process in industry: Qualification considerations.“ Machines 7, no. 4 :72. (2019)

  248. Chatham, C.A., Timothy, E., Long: Williams. “A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Prog. Polym. Sci. 93, 68–95 (2019)

    Article  Google Scholar 

  249. Khorasani, M., Ghasemi, A.H.: Bernard Rolfe, and Ian Gibson. “Additive manufacturing a powerful tool for the aerospace industry.“Rapid prototyping journal(2021)

  250. Babbar, A., Sharma, A., Jain, V., Gupta, D. (eds.): Additive Manufacturing Processes in Biomedical Engineering: Advanced Fabrication Methods and Rapid Tooling Techniques, p. 29. CRC Press (2022 Jul)

  251. Kalia, G., Sharma, A., Babbar, A.: Use of three-dimensional printing techniques for developing biodegradable applications: A review investigation. Materials Today: Proceedings. Apr 2. (2022)

  252. Babbar, A., Rai, A., Sharma, A.: Latest trend in building construction: three-dimensional printing. InJournal of Physics: Conference Series 2021 Aug 1 (Vol. 1950, No. 1, p. 012007). IOP Publishing

  253. Babbar, A., Sharma, A., Kumar, R., Pundir, P., Dhiman, V.: Functionalized biomaterials for 3D printing: An overview of the literature. Additive Manuf. Functionalized Nanomaterials. 1, 87–107 (2021 Jan)

  254. Babbar, A., Jain, V., Gupta, D., Prakash, C., Singh, S., Sharma, A.: 3D bioprinting in pharmaceuticals, medicine, and tissue engineering applications. InAdvanced Manufacturing and Processing Technology 2020 Oct 25 (pp.147–161).CRC Press

  255. Singh, D., Babbar, A., Jain, V., Gupta, D., Saxena, S., Dwibedi, V.: Synthesis, characterization, and bioactivity investigation of biomimetic biodegradable PLA scaffold fabricated by fused filament fabrication process. J. Brazilian Soc. Mech. Sci. Eng. 41(3), 1–13 (2019)

    Article  Google Scholar 

  256. Babbar, A., Jain, V., Gupta, D., Sharma, A., Prakash, C., Kumar, V., Goyal, K.K.: Additive Manufacturing for the Development of Biological Implants, Scaffolds, and Prosthetics. InAdditive Manufacturing Processes in Biomedical Engineering (pp.27–46).CRC Press

  257. Kumar, V., Prakash, C., Babbar, A., Choudhary, S., Sharma, A., Uppal, A.S.: Additive Manufacturing in Biomedical Engineering: Present and Future Applications. InAdditive Manufacturing Processes in Biomedical Engineering (pp.143–164).CRC Press

Download references

Funding

The author(s) of this article has not received funding in any form from any financial body/Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Babbar.

Ethics declarations

Declaration of conflicting interests

There are no potential conflicts of interest among all authors.

Ethical concerns

Not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Rohru, P., Babbar, A. et al. Fused filament fabrication: A state-of-the-art review of the technology, materials, properties and defects. Int J Interact Des Manuf 17, 2867–2889 (2023). https://doi.org/10.1007/s12008-022-01026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01026-5

Keywords

Navigation