Skip to main content
Log in

Sustainability of Recycled ABS and PA6 by Banana Fiber Reinforcement: Thermal, Mechanical and Morphological Properties

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In the present study efforts have been made to prepare functional prototypes with improved thermal, mechanical and morphological properties from polymeric waste for sustainability. The primary recycled acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) has been selected as matrix material with bio-degradable and bio-compatible banana fibers (BF) as reinforcement. The blend (in form of feed stock filament wire) of ABS/PA6 and BF was prepared in house by conventional twin screw extrusion (TSE) process. Finally feed stock filament of ABS/PA6 reinforced with BF was put to run on open source fused deposition modelling based three dimensional printer (without any change in hardware/software of the system) for printing of functional prototypes with improved thermal/mechanical/morphological properties. The results are supported by photomicrographs, thermographs and mechanical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Ghosh, S. Das, A. Majumder, A statistical analysis of cotton fiber properties. J. Inst. Eng. India Ser. E 97, 1 (2016). https://doi.org/10.1007/s40034-015-0072-2

    Article  Google Scholar 

  2. B. Biswas, S. Chabri, B.C. Mitra et al., Mechanical behaviour of aluminium dispersed unsaturated polyester/jute composites for structural applications. J. Inst. Eng. India Ser. C (2016). https://doi.org/10.1007/s40032-016-0329-7

    Google Scholar 

  3. M. Ramesh, T.S.A. Atreya, U.S. Aswin, H. Eashwar, C. Deepa, Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Proc Eng 97, 563–572 (2014)

    Article  Google Scholar 

  4. N. Amir, K.A.Z. Abidin, F.B.M. Shiri, Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite. Proc Eng 184, 573–580 (2017)

    Article  Google Scholar 

  5. K. Rahul, M.H. Shetty, K. Madhyastha, K.P. D’Souza, L. D’Souza, Processing and characterisation of banana fiber reinforced polymer nano composite. Nanosci Nanotechnol 7(2), 34–37 (2017)

    Google Scholar 

  6. A. Majumdar, Y. Kyosev, Modeling and optimization in fibrous materials. J. Inst. Eng. India Ser. E 96, 87 (2015). https://doi.org/10.1007/s40034-015-0067-z

    Article  Google Scholar 

  7. M. Ramesh, R. Logesh, M. Manikandan, N.S. Kumar, D.V. Pratap, Mechanical and water intake properties of banana-carbon hybrid fiber reinforced polymer composites. Mater Res 20(2), 365–376 (2017)

    Article  Google Scholar 

  8. R. Bhoopathi, M. Ramesh, C. Deepa, Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites. Proc Eng 97, 2032–2041 (2014)

    Article  Google Scholar 

  9. M.G. El-Meligy, S.H. Mohamed, R.M. Mahani, Study mechanical, swelling and dielectric properties of prehydrolysed banana fiber–waste polyurethane foam composites. Carbohyd. Polym. 80(2), 366–372 (2010)

    Article  Google Scholar 

  10. J. Santhosh, N. Balanarasimman, R. Chandrasekar, S. Raja, Study of properties of banana fiber reinforced composites. Int. J. Res. Eng. Technol. 3(11), 144–150 (2014)

    Article  Google Scholar 

  11. A. Ramdhonee, P. Jeetah, Production of wrapping paper from banana fibres. J. Environ. Chem. Eng. (2017). https://doi.org/10.1016/j.jece.2017.08.011

    Google Scholar 

  12. R.S. Rana, R. Purohit, A review on mechanical property of sisal glass fiber reinforced polymer composites. Mater Today Proc. 4(2), 3466–3476 (2017)

    Article  Google Scholar 

  13. I.K. Neelamana, S. Thomas, J. Parameswaranpillai, Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites-macroscale to nanoscale. J. Appl. Polym. Sci. 130(2), 1239–1246 (2013)

    Article  Google Scholar 

  14. L.A. Pothan, Z. Oommen, S. Thomas, Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 63(2), 283–293 (2003)

    Article  Google Scholar 

  15. M. Ramachandran, S. Bansal, P. Raichurkar, Experimental study of bamboo using banana and linen fibre reinforced polymeric composites. Perspect. Sci. 8, 313–316 (2016)

    Article  Google Scholar 

  16. R. Singh, K. Sahni, Some investigations on effect of cooling rate on Al2O3 reinforced Al-MMC prepared by vacuum moulding. J. Inst. Eng. India Ser. C 97, 431 (2016). https://doi.org/10.1007/s40032-016-0244-y

    Article  Google Scholar 

  17. A. Rathore, M.K. Pradhan, Hybrid cellulose bionanocomposites from banana and jute fibre: a review of preparation, properties and applications. Mater Today Proc 4(2), 3942–3951 (2017)

    Article  Google Scholar 

  18. S.M. Sapuan, A. Leenie, M. Harimi, Y.K. Beng, Mechanical properties of woven banana fibre reinforced epoxy composites. Mater. Des. 27(8), 689–693 (2006)

    Article  Google Scholar 

  19. N. Venkateshwaran, A. Elayaperumal, Banana fiber reinforced polymer composites—a review. J. Reinf. Plast. Compos. 29(15), 2387–2396 (2010)

    Article  Google Scholar 

  20. H.U. Zaman, M.D.H. Beg, Banana fiber strands–reinforced polymer matrix composites. Compos. Interfaces 23(4), 281–295 (2016)

    Article  Google Scholar 

  21. R. Singh, R. Kumar, M.S.J. Hashmi, Friction welding of dissimilar plastic-based material by metal powder reinforcement. Reference module in materials science and materials engineering, vol. 13 (Elsevier, Oxford, 2016), pp. 1–16. https://doi.org/10.1016/B978-0-12-803581-8.04159-X

    Google Scholar 

  22. R. Kumar, R. Singh, I.P.S. Ahuja, A framework for welding of dissimilar polymers by using metallic fillers. IJMSE 8(1), 101–105 (2017)

    Google Scholar 

  23. R. Singh, R. Kumar, Development of low-cost graphene-polymer blended in-house filament for fused deposition modeling. In Reference module in materials science and materials engineering, ed. by S. Hashmi (Elsevier, Oxford, 2017) pp. 1–10

    Google Scholar 

  24. R. Singh, R. Kumar, S. Kumar, Polymer waste as fused deposition modeling feed stock filament for industrial applications. Reference module in materials science and materials engineering (Elsevier, Oxford, 2017). https://doi.org/10.1016/B978-0-12-803581-8.04153-9

    Google Scholar 

  25. R. Kumar, R. Singh, D. Hui, L. Feo, F. Fraternali, Graphene as biomedical sensing element: state of art review and potential engineering applications. Compos. Part B Eng. (2017). https://doi.org/10.1016/j.compositesb.2017.09.049

    Google Scholar 

  26. R. Singh, R. Kumar, L. Feo, F. Fraternali, Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Compos. B Eng. 101, 77–86 (2016)

    Article  Google Scholar 

  27. R. Kumar, R. Singh, I.P.S. Ahuja, A. Amendola, R. Penna, Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles. Compos. Part B Eng. (2017). https://doi.org/10.1016/j.compositesb.2017.08.018

    Google Scholar 

  28. H.K. Garg, R. Singh, Modelling the peak elongation of Nylon6 and Fe powder based composite wire for FDM feedstock filament. J. Inst. Eng. India Ser. C 98, 567 (2017). https://doi.org/10.1007/s40032-016-0250-0

    Article  Google Scholar 

  29. A. Qattawi, B. Alrawi, A. Guzman, Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Proc. Manuf. 10, 791–803 (2017)

    Google Scholar 

  30. M.H. Too, K.F. Leong, C.K. Chua, Z.H. Du, S.F. Yang, C.M. Cheah, S.L. Ho, Investigation of 3D non-random porous structures by fused deposition modelling. Int. J. Adv. Manuf. Technol. 19(3), 217–223 (2002)

    Article  Google Scholar 

  31. S.H. Masood, W. Rattanawong, P. Iovenitti, Part build orientations based on volumetric error in fused deposition modelling. Int. J. Adv. Manuf. Technol. 16(3), 162–168 (2000)

    Article  Google Scholar 

  32. I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies, vol. 238 (Springer, New York, 2010)

    Book  Google Scholar 

  33. D.S. Thomas, S.W. Gilbert, Costs and cost effectiveness of additive manufacturing. NIST Spec. Publ. 1176, 12 (2014)

    Google Scholar 

  34. C.S. Lee, S.G. Kim, H.J. Kim, S.H. Ahn, Measurement of anisotropic compressive strength of rapid prototyping parts. J. Mater. Process. Technol. 187, 627–630 (2007)

    Article  Google Scholar 

  35. A. Baharin, N.A. Fattah, A.A. Bakar, Z.M. Ariff, Production of laminated natural fibre board from banana tree wastes. Proc. Chem. 19, 999–1006 (2016)

    Article  Google Scholar 

  36. J. Wang, A. Olah, E. Baer, Continuous micro-/nano-fiber composites of polyamide 6/polyethylene oxide with tunable mechanical properties using a novel co-extrusion technique. Polymer 82(1), 166–171 (2016)

    Article  Google Scholar 

  37. J. Sudeepan, K. Kumar, T.K. Barman, P. Sahoo, Mechanical and tribological behavior of ABS/TiO2 polymer composites and optimization of tribological properties using grey relational analysis. J. Inst. Eng. India Ser. C 97(1), 41–53 (2016)

    Article  Google Scholar 

  38. A.K. Mishra, R.K. Srivastava, Wear behaviour of Al-6061/SiC metal matrix composites. J. Inst. Eng. India Ser. C 98(2), 97–103 (2017)

    Article  Google Scholar 

  39. R. Singh, R. Kumar, N. Ranjan, R. Penna, F. Fraternali, On the recyclability of polyamide for sustainable composite structures in civil engineering. Compos. Struct. (2017). https://doi.org/10.1016/j.compstruct.2017.10.036

    Google Scholar 

  40. W. Jordan, P. Chester, Improving the Properties of banana fiber reinforced polymeric composites by treating the fibers. Proc. Eng. 200, 283–289 (2017). https://doi.org/10.1016/j.proeng.2017.07.040

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Creatius3D and Manufacturing Research Lab, GNDEC, Ludhiana for providing technical/financial assistance to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Kumar, R. & Ranjan, N. Sustainability of Recycled ABS and PA6 by Banana Fiber Reinforcement: Thermal, Mechanical and Morphological Properties. J. Inst. Eng. India Ser. C 100, 351–360 (2019). https://doi.org/10.1007/s40032-017-0435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-017-0435-1

Keywords

Navigation