Skip to main content

Advertisement

Log in

In vitro biotechnological approaches on Vanilla planifolia Andrews: advancements and opportunities

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In vitro biotechnological advancement of Vanilla plays a major role in germplasm conservation, genetic engineering, accelerated clonal multiplication and production of disease-free plants with enviable aromatic properties. Several attempts have been taken place for the establishment of efficient in vitro protocol for Vanilla in the past few decades. Optimization of various conditions during different phases of micropropagation, for instance development of in vitro aseptic cultures, multiple shoot regeneration, rooting and acclimatization of the plantlets are discussed in this review. In addition to basic micropropagation techniques, various other in vitro biotechnological applications such as clonal fidelity assessment, genetic transformation, synthetic seed technology and cryopreservation are also highlighted. Apart from the existing data, applied aspects like embryo rescue, mutation breeding, genetic engineering, protoplast fusion, somaclonal variation, in vitro enhancement of vanillin production through cell suspension culture, hairy root culture or bioreactors and cryopreservation need to be investigated further. Overall, the current review gives a synopsis on progress and prospect of in vitro culture of Vanilla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: https://en.wikipedia.org/wiki/Vanilla_(genus)

Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2,4-d :

2,4-dichlorophenoxy acetic acid

BA:

N 6-benzyladenine

Ca:

Callus

GA3 :

Gibberellin A3

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

Kinetin:

6-furfurylaminopurine

MS:

Murashige and Skoog (1962)

Mult Sht:

Multiple shoot

NAA:

α-napthalene acetic acid

PGR:

Plant growth regulator

RH:

Relative humidity

Rt:

Root

Sht Reg:

Adventitious shoot regeneration

TDZ:

N-phenyl-N′-(1,2,3-thidiazol-5-yl) urea or thidiazuron

Zeatin:

4-hydroxy-3-methyl-terms-2-butenyl aminopurine

References

  • Ab Rahman Z, Kamarulzaman HFLI, Othman AN, Zaliha WSW, Radziah CMZC, Zainal Z, Subramaniam S (2013) A simple and efficient protocol for the mass propagation of Vanilla planifolia. Am J Plant Sci 4:1685–1692

    Article  CAS  Google Scholar 

  • Abebe Z, Mengesha A, Teressa A, Tefera W (2009) Efficient in vitro multiplication protocol for Vanilla planifolia using nodal explants in Ethiopia. Afr J Biotechnol 8:6817–6821

    CAS  Google Scholar 

  • Ackerman JD (2003) Vanilla Miller. Flora of North America 26:507. Accessed 11 Apr 2008

  • Akin-Idowu PE, Ibitoye DO, Ademoyegun OT (2009) Tissue culture as a plant production technique for horticultural crops. Afr J Biotechnol 8:3782–3788

    Google Scholar 

  • Asthana P, Jaiswal VS, Jaiswal U (2011) Micropropagation of Sapindus trifoliatus L. and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Acta Physiol Plant 33:1821–1829

    Article  CAS  Google Scholar 

  • Bailey LH, Bailey EZ (1976) Hortus third. A concise dictionary of plants cultivated in the United States and Canada. Macmillan, New York

    Google Scholar 

  • Bairu MW, Aremu AO, van Staden J (2010) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Bello-Bello JJ, Martínez-Estrada E, Caamal-Velázquez JH, Morales-Ramos V (2016) Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). Afr J Biotechnol 15:272–277

    Article  Google Scholar 

  • Bhadramurthy V (2008) Identification, molecular characterization and development of diagnostics for the viruses associated with vanilla (Vanilla planifolia Andrews). PhD thesis, Mangalore University, Mangalore

  • Bhat AI, Bhadramurthy V, Siju S, Hareesh PS (2006) Detection and identification of Cymbidium mosaic virus infecting vanilla (Vanilla planifolia Andrews) in India based on coat protein gene sequence relationships. J Plant Biochem Biotechnol 15:33–37

    Article  CAS  Google Scholar 

  • Bhatia P, Ashwath N (2005) Effect of medium pH on shoot regeneration from the cotyledonary explants of tomato. Biotechnol 4:7–10

    Article  Google Scholar 

  • Buccellato (2005) The various uses of vanilla in perfumery. Vanilla: the first international congress. Allured, Carol Stream, pp 67–70

    Google Scholar 

  • Butenko RG, Lipsky AKH, Chernyak ND, Arya HC (1984) Changes in culture medium pH by cell suspension cultures of Dioscorea deltoides. Plant Sci Lett 35:207–212

    Article  CAS  Google Scholar 

  • Bythrow JD (2005) Historical perspective: vanilla as a medicinal plant. Semin Integr Med 3:129–131

    Article  Google Scholar 

  • Cameron K, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Yukawa T, Hills HG, Goldman DH (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nuceotide sequences. Am J Bot 862:208–224

    Article  Google Scholar 

  • Chen C (2003) Development of a heat transfer model for plant tissue culture vessels. Biosys Eng 85:67–77

    Article  Google Scholar 

  • Correll DS (1953) Vanilla—its botany, history, cultivation and economic importance. Econ Bot 7:291–358

    Article  CAS  Google Scholar 

  • Daugsch A, Pastore G (2005) Obtenc¸ ao de vanilina: oportunidade biotecnológica. Quím Nova 28:642–645 (in Portuguese; abstract in English)

    Article  CAS  Google Scholar 

  • de Oliveira SOD, Sayd RM, Balzon TA, Scherwinski-Pereira JE (2013) A new procedure for in vitro propagation of vanilla (Vanilla planifolia) using a double-phase culture system. Sci Hortic 161:204–209

    Article  CAS  Google Scholar 

  • Distabanjong K, Geneve RL (1997) Multiple shoot formation from cotyledonary node segments of Eastern redbud. Plant Cell Tiss Organ Cult 47:247–254

    Article  Google Scholar 

  • Divakaran M, Babu KN (2009) Micropropagation and in vitro conservation of vanilla (Vanilla planifolia Andrews). In: Jain SM, Saxena PK (eds) Methods in molecular biology, protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, vol 547, pp 129–138

  • Divakaran M, Babu KN, Peter KV (2006) Conservation of Vanilla species in vitro. Sci Hortic 110:175–180

    Article  CAS  Google Scholar 

  • Divakaran M, Jayakumar VN, Veena SS, Vimala J, Basha A, Saji KV, Babu KN, Peter KV (2008) Genetic variations and interrelationships in Vanilla planifolia and few related species as expressed by RAPD polymorphism. Genet Resour Crop Evol 55:459–470

    Article  CAS  Google Scholar 

  • Divakaran M, Babu KN, Ravindran PN, Peter KV (2015) Biotechnology for micropropagation and enhancing variations in Vanilla. Asian J Plant Sci Res 5:52–62

    Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the Orchid Family. Dioscorides Press, Portland

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Article  Google Scholar 

  • Faisal M, Siddique I, Anis M (2006a) In vitro rapid regeneration of plantlets from nodal explants of Mucuna pruriens—a valuable medicinal plant. Ann Appl Biol 148:1–6

    Article  CAS  Google Scholar 

  • Faisal M, Siddique I, Anis M (2006b) An efficient plant regeneration system for Mucuna pruriens L. (DC) using cotyledonary node explants. In Vitro Cell Dev Biol Plant 42:59–64

    Article  CAS  Google Scholar 

  • Famiani F, Ferradini N, Staffolani P, Standardi A (1994) Effect of leaf excision time, age, BA concentration and dark treatments on in vitro shoot regeneration of M26 apple rootstock. J Hortic Sci 69:679–685

    Article  Google Scholar 

  • Fitzgerald DJ, Stratford M, Narbad A (2003) Analysis of the inhibition of food spoilage yeasts by vanillin. Int J Food Microbiol 86:113–122

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald DJ, Stratford M, Gasson MJ, Narbad A (2004) The potential application of vanillin in preventing yeast spoilage of soft drinks and fruit juices. J Food Prot 67:391–395

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Mandal N (2010) Tissue culture of Anthurium andreanum: a significant review and future prospective. Int J Bot 6:207–219

    Article  Google Scholar 

  • Gantait S, Mandal N, Bhattacharyya S, Das PK, Nandy S (2009) Mass multiplication of Vanilla planifolia with pure genetic identity confirmed by ISSR. Int J Plant Dev Biol 3:18–23

    Google Scholar 

  • Gantait S, Mandal N, Nandy S (2011) Advances in micropropagation of selected aromatic plants: a review on vanilla and strawberry. Am J Biochem Mol Biol 1:1–19

    Article  Google Scholar 

  • Gantait S, Kundu S, Ali MN, Sahu NC (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:98

    Article  CAS  Google Scholar 

  • Gantait S, Kundu S, Das PK (2016a) Acacia: an exclusive survey on in vitro propagation. J Saudi Soc Agric Sci. doi:10.1016/j.jssas.2016.03.004

    Google Scholar 

  • Gantait S, Kundu S, Wani SH, Das PK (2016b) Cryopreservation of forest tree seeds: a mini-review. J For Env Sci 32:311–322

    Google Scholar 

  • Geetha S, Shetty SA (2000) In vitro propagation of Vanilla planifolia, a tropical orchid. Curr Sci 79:886–889

    Google Scholar 

  • George EF, Davies W (2008) Effects of the physical environment. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 423–464

    Google Scholar 

  • George EF, Debergh PC (2008) Micropropagation: uses and methods. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 29–64

    Google Scholar 

  • George PS, Ravishankar GA (1997) In vitro multiplication of Vanilla planifolia using axillary bud explants. Plant Cell Rep 16:490–494

    CAS  Google Scholar 

  • Ghashghaie J, Brenckmann F, Saugier B (1992) Water relations and growth of rose plants cultured in vitro under various relative humidities. Plant Cell Tiss Organ Cult 30:51–57

    Article  Google Scholar 

  • Giridhar P, Ravishankar GA (2004) Efficient micropropagation of Vanilla plonifolia Andr. under influence of thidiazuron, zeatin and coconut milk. Ind J Biotechnol 3:113–118

    CAS  Google Scholar 

  • Giridhar P, Reddy BO, Ravishankar GA (2001) Silver nitrate influences in vitro shoot multiplication and root formation in Vanilla planifolia Andr. Curr Sci 81:1166–1170

    CAS  Google Scholar 

  • Gonzalez-Arnao MT, Lazaro-Vallejo CE, Engelmann F, Gamez-Pastrana R, Martinez-Ocampo YM, Pastelin-Solano MC, Diaz-Ramos C (2009) Multiplication and cryopreservation of vanilla (Vanilla planifolia ‘Andrews’). In Vitro Cell Dev Biol Plant 45:574–582

    Article  Google Scholar 

  • Gopi C, Vatsala TM, Ponmurugan P (2006) In vitro multiple shoot proliferation and plant regeneration of Vanilla planifolia Andr.—a commercial spicy orchid. J Plant Biotechnol 8(37):41

    Google Scholar 

  • Grisoni M, Davidson F, Hyrondelle C, Farreyrol K, Caruana ML, Pearson M (2004) Nature, incidence, and symptomatology of viruses infecting Vanilla tahitensis in French polynesia. Plant Dis 88:119–124

    Article  Google Scholar 

  • Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Harbage JF (2001) Micropropagation of Echinacea angustifolia, E. pallida, and E. purpurea from stem and seed explants. Hortic Sci 36:360–364

    CAS  Google Scholar 

  • Havkin-Frenkel D, Podstolski A, Knorr D (1996) Effect of light on vanillin precursors formation by in vitro cultures of Vanilla planifolia. Plant Cell Tiss Organ Cult 45:133–136

    Article  CAS  Google Scholar 

  • Hoffman PG, Zapf CM (2012) Review of vanilla. Medicinal and aromatic plants–industrial profiles. J Nat Prod 75:2272–2273

    Article  CAS  Google Scholar 

  • Inderiati S, Rahman LF (2012) Efficient micropropagation of Vanilla planifolia Andr. under influence of benzyladenine (BA). J Agrisistem 8:23–26

    Google Scholar 

  • Janarthanam B, Seshadri S (2008) Plantlet regeneration from leaf derived callus of Vanilla planifolia Andr. In Vitro Cell Dev Biol Plant 44:84–89

    Article  CAS  Google Scholar 

  • Jing GF, Ab Razak WNAW, Ab Rahman Z, Subramaniam S (2014) The effect of thin cell layer system in Vanilla planifolia in vitro culture. Curr Bot 5:22–25

    Google Scholar 

  • Kalimuthu K, Senthilkumar R, Murugalatha N (2006) Regeneration and mass multiplication of Vanilla planifolia Andr.—a tropical orchid. Curr Sci 91:1401–1403

    CAS  Google Scholar 

  • Karsai I, Bedo Z, Hayes PM (1994) Effect of induction medium pH and maltose concentration on in vitro androgenesis of hexaploid winter triticale and wheat. Plant Cell Tiss Organ Cult 39:49–53

    Article  CAS  Google Scholar 

  • Kaur S (2015) In vitro propagation of Vanilla Planifolia Andr.—a spice orchid. Int J Sci Res 4:218–221

    Google Scholar 

  • Keshava C, Keshava N, Ong TM (1998) Protective effect of vanillin on radiation-induced micronuclei and chromosomal aberrations in V79 cells. Mutat Res 397:149–159

    Article  CAS  PubMed  Google Scholar 

  • Krutovsky KV, Tretyakova IN, Oreshkova NV, Pak ME, Kvitko OV, Vaganov EA (2014) Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica Ledeb.) megagametophytes for whole genome de novo sequencing. In Vitro Cell Dev Biol Plant 50:655–664

    Article  CAS  Google Scholar 

  • Larkin P, Scowcroft WR (1981) Somaclonal variation, a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–406

    Article  CAS  PubMed  Google Scholar 

  • Lee-Espinosa HE, Murguía-González J, García-Rosas B, Córdova-Contreras AL, Laguna-Cerda A, Mijangos-Cortés JO, Barahona-Pérez LF, Iglesias-Andreu LG, Santana-Buzzy N (2008) In vitro clonal propagation of vanilla (Vanilla planifolia ‘Andrews’). Hortic Sci 43:454–458

    Google Scholar 

  • Lionnet JFG (1958) Seychelles vanilla—I. A valuable orchid crop. World Crops 10:441–444

    Google Scholar 

  • Lirdprapamongkol K, Sakurai H, Kawasaki N, Choo MK, Saitoh Y, Aozuka Y, Singhirunnusorn P, Ruchirawat S, Svasti J, Saiki I (2005) Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. J Pharm Sci 25:57–65

    CAS  Google Scholar 

  • Lucksom SZ (2007) The orchids of Sikkim and North–east Himalaya. Author Publishers and Distributors, Gangtok

    Google Scholar 

  • Madhubala R, Bhadramurthy V, Bhat AI, Hareesh PS, Retheesh ST, Bhai RS (2005) Occurrence of Cucumber mosaic virus on vanilla (Vanilla planifolia Andrews) in India. J Biosci 30:339–350

    Article  CAS  PubMed  Google Scholar 

  • Malabadi RB, Nataraja K (2007) Genetic transformation of Vanilla planifolia by Agrobacterium tumefaciens using shoot tip sections. Res J Bot 2:86–94

    Article  CAS  Google Scholar 

  • Mante S, Scorza R, Cordts JM (1989) Plant regeneration from cotyledons of Prunus persica, Prunus domestica, and Prunus cerasus. Plant Cell Tiss Organ Cult 19:1–11

    Article  CAS  Google Scholar 

  • Mathew KM, Rao YS, George GL, Lakshmanan R, Madhusoodanan KJ (2000) In vitro propagation of Vanilla tahitensis Moore. J Spices Aromat Crops 9:171–173

    Google Scholar 

  • Mengesha A, Ayenew B, Gebremariam E, Tadesse T (2012) Micropropagation of Vanilla planifolia using Enset (Ensete ventricosum (Welw, cheesman)) starch as a gelling agent. Curr Res J Biol Sci 4:519–525

    Google Scholar 

  • Menon S, Nayeem N (2013) Vanilla Planifolia: a review of a plant commonly used as flavouring agent. Int J Pharm Sci Rev Res 20:225–228

    CAS  Google Scholar 

  • Mitra GC, Prasad RN, Chowdhury AR (1976) Inorganic salts and differentiation of protocorms in seed callus of an orchid and correlated changes in its free amino acid content. Ind J Exp Biol 14:350–351

    CAS  Google Scholar 

  • Morwal G, Jadhav SJ, Shinde A, Mandge N, Mandge N (2015) Conservation of Vanilla Planifolia by in vitro micropropagation method. In: Special issue national conference “ACGT 2015”, 13–14 February 2015, pp 71–77

  • Mujar EK, Sidik NJ, Sulong NA, Jaapar SS, Othman MH (2014) Effect of low gamma radiation and methyl jasmonate on Vanilla planifolia tissue culture. Int J Pharm Sci Rev Res 27:163–167

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–495

    Article  CAS  Google Scholar 

  • Mushimiyimana I, Asiimwe T, Dusabe C, Gatunzi F, Ndahimana J, Ahishakiye V, Kahia J, Gahakwa D (2011) In vitro propagation of vanilla in Rwanda. Rwanda J 24:67–74

    Google Scholar 

  • Nair RR, Ravindran PN (1994) Somatic association of chromosomes and their mitotic abnormalities in Vanilla planifolia (Andrews). Caryologia 47:65–74

    Article  Google Scholar 

  • Nikishina TV, Popov AS, Kolomeitseva GL, Golovkin BN (2001) Cryopreservation of seeds of some tropical orchids. Doklady Biochem Biophys 378:231–233 (Translated from Doklady Akademii Nauk 378:555–557)

    Article  CAS  Google Scholar 

  • Odoux E, Escoute J, Verdeil JL, Brillouet JM (2003) Localization of β-d-glucosidase activity and glucovanillin in vanilla bean (Vanilla planifolia Andrews). Ann Bot 92:437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padre S (2007) Vanilla farmers turn to value addition. Spice India 20:4–10

    Google Scholar 

  • Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Govinden-Soulange J, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasqua G, Manes F, Monacelli B, Natale L, Anselmi S (2002) Effects of the culture medium pH and ion uptake in in vitro vegetative organogenesis in thin cell layers of tobacco. Plant Sci 162:947–955

    Article  CAS  Google Scholar 

  • Pearson MN, Jackson GVH, Pone SP, Howitt R (1993) Vanilla virus in the South Pacific. Plant Pathol 42:127–131

    Article  Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Nat Acad Sci 91:5222–5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik RLM (1990) Rejuvenation and micropropagation. In: Nijkamp HJ (ed) Progress in plant cellular and molecular geology. Kluwer Academic Publishers, Dordrecht, pp 91–101

    Chapter  Google Scholar 

  • Porras-alfaro A, Bayman P (2007) Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth. Mycologia 99:510–525

    Article  CAS  PubMed  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314

    Article  CAS  PubMed  Google Scholar 

  • Purseglove JW (1985) Tropical crops: monocotyledons. Longman, Harlow

    Google Scholar 

  • Purseglove JW, Brown EG, Green CL, Robbins SRJ (1981) Spices, vol 2. Longman, New York

    Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG (2015) Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell Tiss Organ Cult 123:657–664

    Article  Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Dev Biol Plant 52:154–160

    Article  Google Scholar 

  • Ramos-Castellá A, Iglesias-Andreu LG, Bello-Bello J, Lee-Espinosa H (2014) Improved propagation of vanilla (Vanilla planifolia Jacks. Ex Andrews) using a temporary immersion system. In Vitro Cell Dev Biol Plant 50:576–581

    Article  CAS  Google Scholar 

  • Ranadive AS (1994) Vanilla—cultivation, curing, chemistry, technology and commercial products. In: Charalambrous G (ed) Developments in food science spices, herbs and edible fungi. Elsevier Publishers, Amsterdam, pp 517–577

    Google Scholar 

  • Rao SR, Ravishankar GA (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304

    Article  CAS  Google Scholar 

  • Renuga G, Saravana Kumar SN (2014) Induction of vanillin related compounds from nodal explants of Vanilla planifolia using BAP and kinetin. Asian J Plant Sci Res 4:53–61

    Google Scholar 

  • Retheesh ST, Bhat AI (2010) Simultaneous elimination of Cucumber mosaic virus and Cymbidium mosaic virus infecting Vanilla planifolia through meristem culture. Crop Prot 29:1214–1217

    Article  Google Scholar 

  • Retheesh ST, Bhat AI (2011) Genetic transformation and regeneration of transgenic plants from protocorm-like bodies of vanilla (Vanilla planifolia Andrews) using Agrobacterium tumefaciens. J Plant Biochem Biotechnol 20:262–269

    Article  CAS  Google Scholar 

  • Richard A, Farreyrol K, Rodier B, Leoce-Mouk-San K, Wong M, Pearson M, Grisoni M (2009) Control of virus diseases in intensively cultivated vanilla plots of French polynesia. Crop Prot 28:870–877

    Article  Google Scholar 

  • Roberts AW, Haigler CH (1994) Cell expansion and tracheary element differentiation are regulated by extracellular pH in mesophyll cultures of Zinnia elegans L. Plant Physiol 105:699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha JG (1972) Significance of mercury in the environment. Residue Rev 42:103–163

    CAS  PubMed  Google Scholar 

  • Schlüter PM, Soto-Arenas MA, Harris SA (2007) Genetic variation in Vanilla planifolia (Orchidaceae). Ecol Bot 61:328–336

    Article  Google Scholar 

  • Shanmugavalli N, Umashankar V, Raheem (2009) Antimicrobial activity of Vanilla planifolia. Ind J Sci Technol 2:39–40

    Google Scholar 

  • Sreedhar RV, Venkatachalam L, Bhagyalakshmi N (2007) Genetic fidelity of long-term micropropagated shoot cultures of vanilla (Vanilla planifolia Andrews) as assessed by molecular markers. Biotechnol J 2:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Straver JTG (1999) Vanilla planifolia. In: Andrews HC, de Guzman CC, Siemonsma JS (eds) Plant resources of South-East Asia no. 13 spices. Backhuys Publishers, Linden, pp 228–233

    Google Scholar 

  • Tan BC, Chin CF, Alderson P (2011a) Optimisation of plantlet regeneration from leaf and nodal derived callus of Vanilla planifolia Andrews. Plant Cell Tiss Organ Cult 105:457–463

    Article  CAS  Google Scholar 

  • Tan BC, Chin CF, Alderson P (2011b) An improved plant regeneration of Vanilla planifolia Andrews. Plant Tiss Cult Biotechnol 21:27–33

    Google Scholar 

  • Tan BC, Chin CF, Alderson P (2013) Effects of sodium nitroprusside on shoot multiplication and regeneration of Vanilla planifolia Andrews. In Vitro Cell Dev Biol Plant 49:626–630

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Giang DDT, Tanaka M (2005) In vitro acclimatization of banana and Cymbidium. Int J Bot 1:41–49

    Article  Google Scholar 

  • Thomas T (2003) Advances in mulberry tissue culture. J Plant Biol 45:7–21

    Article  Google Scholar 

  • Thorpe T, Stasolla C, Yeung EC, De Klerk GJ, Roberts A, George EF (2008) The components of plant tissue culture media II: organic additions, osmotic and pH effects and support systems. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture 3rd edition, vol 1. The background. Springer, Dordrecht, p 143

    Google Scholar 

  • Tipparaju S, Ravishankar S, Slade PJ (2004) Survival of Listeria monocytogenes in vanilla-flavored soy and dairy products stored at 8 °C. J Food Prot 67:378–382

    Article  PubMed  Google Scholar 

  • Vacin EF, Went EW (1949) Some pH changes in nutrient solutions. Bot Gazette 110:605–613

    Article  CAS  Google Scholar 

  • Velankar MH, Heble MR (2004) Biotransformation of externally added vanillin related compounds by multiple shoot cultures of Vanilla planifolia L. J Plant Biochem Biotechnol 13:153–156

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Blecker M, Reujans M, Van de Le T, Hornes M, Frijiters A, Pot A, Pelemen J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515

    Article  CAS  PubMed  Google Scholar 

  • Wang QM, Wang L (2012) An evolutionary view of plant tissue culture: somaclonal variation and selection. Plant Cell Rep 31:1535–1547

    Article  CAS  PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primres are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

  • Ziv M (1990) Vitrification: morphological and physiological disorders of in vitro plants. In: Debergh PC, Zimmerman RH (eds) Micropropagation: technology and application. Springer, Dordrecht, pp 45–69

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the experimental and library support from Department of Agricultural Biotechnology, Faculty of Agriculture, and Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Gantait.

Ethics declarations

Conflict of interest

We, the authors of this article declare that there is no conflict of interest and we do not have any financial gain from it.

Additional information

Communicated by M. Capuana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gantait, S., Kundu, S. In vitro biotechnological approaches on Vanilla planifolia Andrews: advancements and opportunities. Acta Physiol Plant 39, 196 (2017). https://doi.org/10.1007/s11738-017-2462-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2462-1

Keywords

Navigation