Skip to main content
Log in

Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The low genetic variability of vanilla (Vanilla planifolia Jacks.) makes it susceptible to pests and diseases, which leads to a decrease in production. The genetic variability can be broadened by using in vitro plant tissue culture techniques. The use of indirect morphogenic routes allows increasing the percentage of somaclonal variation in regenerated plantlets. The objective of this research was to establish a protocol for indirect organogenesis in V. planifolia aimed at broadening the genetic base of the crop. A friable callus was induced from immature seeds grown in the dark, using MS medium supplemented with 2.27 μM thidiazuron (TDZ). Subsequently, 6.8 shoots per callus were regenerated in MS medium supplemented with 8.88 μM benzyladenine (BA). One hundred per cent rooting of regenerated shoots was achieved when MS medium was used with no plant growth regulators. Last, rooted plantlets were acclimatized in a greenhouse. A 91 % survival rate was observed. Molecular analyses on regenerated plantlets revealed the existence of a 71.66 % genetic polymorphism. Furthermore, morphological variation was confirmed by the presence of variegated individuals in regenerated plantlets. The proposed protocol can be useful in subsequent vanilla genetic improvement works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abebe Z, Mengesha A, Teressa A, Tefera W (2009) Efficient in vitro multiplication protocol for Vanilla planifolia using nodal explants in Ethiopia. Afr J Biotechnol 8:6817–6821

    CAS  Google Scholar 

  • Ahmad N, Abbasi BH, Fazal H, Khan MA, Afridi MS (2014) Effect of reverse photoperiod on in vitro regeneration and piperine production in Piper nigrum. C R Biol 337:19–28

    Article  PubMed  Google Scholar 

  • Cardone S, Olmos S, Echenique V (2010) Variación somaclonal. In: Levitus G, Echenique V, Rubinstein C, Hopp E, Mroginski L (eds) Biotecnología y mejoramiento vegetal II. Ediciones INTA, Buenos Aires, pp 229–241

    Google Scholar 

  • Castro-Bobadilla G, Martínez AJ, Martínez ML, García-Franco JG (2011) Aplicación de riego localizado para aumentar la retención de frutos de Vanilla planifolia en el Totonacapan, Veracruz, México. Agrociencia 45:281–291

    Google Scholar 

  • Grafi G, Barak S (2014) Stress induces cell dedifferentiation in plants. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2014.07.015

    Google Scholar 

  • Gurel E, Yucesan B, Aglic E, Verma SK, Sokmen M, Sokmen A (2011) Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanyafoxglove). Plant Cell Tissue Organ Cult 104:217–225

    Article  CAS  Google Scholar 

  • Hernández-Hernández J (2011) Vanilla diseases. In: Havkin-Frenkel D, Belanger FC (eds) Handbook of vanilla science and technology. Wiley, Chichester, pp 26–39

  • Janarthanam B, Seshadri S (2008) Plantlet regeneration from leaf derived callus of Vanilla planifolia Andr. In Vitro Cell Dev Biol-Plant 44:84–89

    Article  CAS  Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites from molecules to populations and back. Trends Ecol Evol 11:424–429

    Article  CAS  PubMed  Google Scholar 

  • Jo EA, Tewari RK, Hahn EJ, Paek KY (2008) Effect of photoperiod and light intensity on in vitro propagation of Alocasia amazónica. Plant Biotechnol Rep 2:207–212

    Article  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu K, Senthilumar R, Murugalatha N (2006) Regeneration and mass multiplication of Vanilla planifolia Andr.—a tropical orchid. Curr Sci 91:1401–1403

    CAS  Google Scholar 

  • Koh YC, Davies FT Jr (2001) Mutagenesis and in vitro culture of Tillandsia fasciculata Swartz var. fasciculata (Bromeliaceae). Sci Hortic 87:225–240

    Article  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Lebeda A, Svábová, L (2010) In vitro screening methods for assessing plant disease resistance: In: FAO/IAEA. Mass screening techniques for selecting crops resistant to disease. International Atomic Energy Agency, Vienna, pp 5–45

  • Lee-Espinosa HE, Murguía-González J, García-Rosas B, Córdova-Contreras AL, Laguna-Cerda A, Mijangos-Cortés JO, Barahona-Pérez LF, Iglesias-Andréu LG, Santana-Buzzy N (2008) In vitro clonal propagation of vanilla (Vanilla planifolia ‘Andrews’). Hortic Sci 43:454–458

    Google Scholar 

  • Lestari EG (2006) In vitro selection and somaclonal variation for biotic and abiotic stress tolerance. Biodiversitas 7:297–300

    Article  Google Scholar 

  • Linacero R, Rueda J, Esquivel E, Bellido A, Domingo A, Vázquez AM (2011) Genetic and epigenetic relationship in rye, Secale cereale L., somaclonal variation within somatic embryo-derived plants. In Vitro Cell Dev Biol-Plant 47:618–628

    Article  Google Scholar 

  • Liu X, Yang G (2012) Adventitious shoot regeneration of oriental lily (Lilium orientalis) and genetic stability evaluation based on ISSR marker variation. In Vitro Cell Dev Biol-Plant 48:172–179

    Article  Google Scholar 

  • Liu F, Huang LL, Li YL, Reinhoud P, Jongsma MA, Wang CY (2011) Shoot organogenesis in leaf explants of Hydrangea macrophylla ‘Hyd1’ and assessing genetic stability of regenerants using ISSR markers. Plant Cell Tissue Organ Cult 104:111–117

    Article  CAS  Google Scholar 

  • Mahlanza TR, Rutherford S, Snyman SJ, Watt MP (2013) In vitro generation of somaclonal variant plants of sugarcane for tolerance to Fusarium sacchari. Plant Cell Rep 32:249–262

    Article  CAS  PubMed  Google Scholar 

  • Mathur A, Mathur AK, Verma P, Yadav S, Gupta ML, Darokar MP (2008) Biological hardening and genetic fidelity testing of micro-cloned progeny of Chlorophytum borivilianum. Afr J Biotechnol 7:1046–1053

    CAS  Google Scholar 

  • Mengesha A, Ayenew B, Gebremariam E, Tadesse T (2012) Micropropagation of Vanilla planifolia using Enset (Ensete ventricosum (Welw, cheesman)) starch as a gelling agent. Curr Res J Biol Sci 4:519–525

    Google Scholar 

  • Minoo D, Nirmal-Babu K, Ravindran PN, Peter KV (2006) Inter specific hybridization in vanilla and molecular characterization of hybrids and selfed progenies using RAPD and AFLP markers. Sci Hortic 108:414–422

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oliveira SOD, Meneses R, Aparecida T, Scherwinski-Pereirad JE (2013) A new procedure for in vitro propagation of vanilla (Vanilla planifolia) using a double-phase culture system. Sci Hortic 161:204–209

    Article  Google Scholar 

  • Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Govinden- Soulange J, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82

    Article  PubMed Central  PubMed  Google Scholar 

  • Pradeep R, Sarla N, Siddiq EA (2002) Inter simple sequence repeats (ISSR) polymorphism and its aplication in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  • Ravikumar RL, Patil BS, Soregaon CD, Hegde SG (2007) Genetic evidence for gametophytic selection of wilt resistant alleles in chickpea. Theor Appl Genet 114:619–662

    Article  CAS  PubMed  Google Scholar 

  • Retheesh ST, Bhat AI (2011) Genetic transformation and regeneration of transgenic plants from protocorm-like bodies of vanilla (Vanilla planifolia Andrews) using Agrobacterium tumefaciens. J Plant Biochem Biot 20:262–269

    Article  CAS  Google Scholar 

  • Shin YK, Baque MA, Elghamedi S, Lee EJ, Paek KY (2011) Effects of activated charcoal, plant growth regulators, and ultrasonic pre-treatments on in vitro germination and protocorm formation of Calanthe hybrids. Aust J Crop Sci 5:582–588

    CAS  Google Scholar 

  • Soto-Arenas MA (2003) Vanilla. In: Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (eds) Genera Orchidacearum, vol 3, Orchidoideae (Part 2) Vanilloideae. Oxford University Press, Oxford, pp 321–334

    Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–751

    CAS  PubMed  Google Scholar 

  • Tan BC, Chin CF, Alderson P (2011) Optimisation of plantlet regeneration from leaf and nodal derived callus of Vanilla planifolia Andrews. Plant Cell Tissue Organ Cult 105:457–463

    Article  CAS  Google Scholar 

  • Tan BC, Chin CF, Alderson P (2013) Effects of sodium nitroprusside on shoot multiplication and regeneration of Vanilla planifolia Andrews. Plant Cell Tissue Organ Cult 105:457–463

    Article  Google Scholar 

  • Yin ZF, Zhao B, Bi WL, Chen L, Wang QC (2013) Direct shoot regeneration from basal leaf segments of Lilium and assessment of genetic stability in regenerants by ISSR and AFLP markers. In Vitro Cell Dev Biol-Plant 49:333–342

    Article  CAS  Google Scholar 

  • Zar JA (1996) Biostatistical analysis, 3rd edn. Prentice Hall Inc., New Jersey

    Google Scholar 

  • Zhao J, Zhang Q, Xie J, Hung CY, Cui J, Henny RJ, Chen J (2012) Plant regeneration via direct somatic embryogenesis from leaf and petiole explants of Epipremnum aureum ‘Marble Queen’ and characterization of selected variants. Acta Physiol Plant 34:1461–1469

    Article  CAS  Google Scholar 

  • Zuraida AR, Liyana KHF, Nazreena OA, Wan WS, Che CMZ, Zamri Z, Sreeramanan S (2013) A simple and efficient protocol for the mass propagation of Vanilla planifolia. Am J Plant Sci 4:1685–1692

    Article  Google Scholar 

Download references

Acknowledgments

We thank “Programa de Mejoramiento del Profesorado” (PROMEP) for the financial support to the project: “Biotechnology Basis for Genetic Improvement of Vanilla planifolia” which integrates the UV-CA-234, within the Network: “Plant Breeding in V. planifolia Jacks”. MARM thanks the Consejo Nacional de Ciencia y Tecnología (CONACyT) by grant No. 275736, which allowed the realization of this work.

Authors contribution

LGIA conceived and designed research. MARM conducted experiments, analyzed and reviewed the statistical analysis. MARM and LGIA wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes G. Iglesias-Andreu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Mosqueda, M.A., Iglesias-Andreu, L.G. Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell Tiss Organ Cult 123, 657–664 (2015). https://doi.org/10.1007/s11240-015-0868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0868-2

Keywords

Navigation