Skip to main content
Log in

Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The present review illustrates the implementation of synthetic seed technology for mass propagation and short-term storage of several medicinal plants, popularly grown throughout the world. Biotechnology-based research with special reference to in vitro plant cell and tissue culture intervention created a new outlook in terms of mass propagation, germplasm storage and cryoconservation, production of secondary metabolites as well as genetic transformation. Synthetic seed technology involving alginate encapsulation of in vitro or in vivo generated explants proved to be a competent system to deal with multiplication, storage and exchange of seedless medicinal plants having traits of choice that are intricate to propagate via conventional approach. Nevertheless, optimization of production, storage and exchange of synthetic seeds are influenced by several factors. Manipulation of those factors such as explant selection, encapsulating agent and matrix determined the success of synthetic seed technology in medicinal plants. The present review elucidates an outline of past progress, present status and future prospects of synthetic seed technology intervention in medicinal plants with special emphasis on the factors which determine the success of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AB:

Axillary bud

Ca:

Calli

CS:

Cell suspension

HR:

Hairy root

MSt:

Microshoot

NS:

Nodal segment

PGR:

Plant growth regulator

PLB:

Protocorm-like body

SE:

Somatic embryo

ST:

Shoot tip

References

  • Adhikari S, Bandyopadhyay TK, Ghosha P (2014) Assessment of genetic stability of Cucumis sativus L. regenerated from encapsulated shoot tips. Sci Hortic 170:115–122

    CAS  Google Scholar 

  • Adriani M, Piccioni E, Standardi A (2000) Effect of different treatments on conversion of ‘Hayward’ kiwifruit synthetic seeds to whole plants following encapsulation of in vitro-derived buds. N Z J Crop Hortic Sci 28:59–67

    Google Scholar 

  • Ahmad N, Anis M (2010) Direct plant regeneration from encapsulated nodal segments of Vitex negundo. Biol Plant 54:748–752

    Google Scholar 

  • Ahmad N, Faisal M, Fatima N, Anis M (2012) Encapsulation of microcuttings for propagation and short-term preservation in Ruta graveolens L.: a plant with high medicinal value. Acta Physiol Plant 34:2303–2310

    CAS  Google Scholar 

  • Ahmed MR, Anis M, Al-Etta HA (2015) Encapsulation technology for short-term storage and germplasm exchange of Vitex trifolia L. Rend Fis Acc Lincei. doi:10.1007/s12210-014-0366-1

    Google Scholar 

  • Alatar A, Faisal M (2012) Encapsulation of Rauvolfia tetraphylla microshoots as artificial seeds and evaluation of genetic fidelity using RAPD and ISSR markers. J Med Plant Res 6:1367–1374

    CAS  Google Scholar 

  • Ali A, Gull I, Majid A, Saleem A, Naz S, Naveed NH (2012) In vitro conservation and production of vigorous and desiccate tolerant synthetic seeds in Stevia rebaudiana. J Med Plant Res 6:1327–1333

    CAS  Google Scholar 

  • Al-Qurainy F, Nadeem M, Khan S, Alansi S, Tarroum M, Al-Ameri A (2014) Synseed production for storage and conservation of Ochradenus baccatus delile. Pak J Bot 46:897–902

    CAS  Google Scholar 

  • Anand Y, Bansal YK (2002) Synthetic seeds: a novel approach of in vitro plantlet formation in vasaka (Adhatoda vascia Nees.). Plant Biotechnol J 19:159–162

    CAS  Google Scholar 

  • Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78:1438–1444

    Google Scholar 

  • Bajaj YPS (1995) Somatic embryogenesis and synthetic seed I. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 30. Springer, Berlin

    Google Scholar 

  • Ballester A, Janeiro LV, Vieitez AM (1997) Cold storage of shoot cultures and alginate encapsulation of shoot tips of Camellia japonica L. and Camellia reticulate Lindly. Sci Hortic 7:67–78

    Google Scholar 

  • Banerjee S, Singh S, Pandey H, Pandey P, Rahman LU (2012) Conservation and storage of Curcuma amada Roxb. synseeds on Luffa sponge matrix and RAPD analysis of the converted plantlets. Ind Crops Prod 36:383–388

    CAS  Google Scholar 

  • Bapat VA, Rao PS (1992) Plantlet regeneration from encapsulated and non-encapsulated desiccated somatic embryos of a forest tree: sandalwood (Santalum album L.). J Plant Biochem Biotechnol 1:109–113

    CAS  Google Scholar 

  • Castellanos H, Sánchez-Olate M, Ríos YD (2004) Embriogénesis somátic recurrente en raulí (Nothofagus alpine (Poepp. et Endl.) Oerst). Segundo Congreso Chileno de Ciencias Forestales, Valdivia, Chile. 10–12 de noviembre. Universidad Austral de Chile, Valdivia, p 36

  • Chand S, Singh AK (2004) Plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb.—a timber yielding leguminous tree. J Plant Physiol 161:237–243

    CAS  PubMed  Google Scholar 

  • Chaudhury R, Malik SK (2003) Strategies for achieving short-, medium- and long-term conservation of desiccation-sensitive seeds. In: Chaudhury R, Pandey R, Malik SK, Bhag M (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 191–200

    Google Scholar 

  • Cheruvathur MK, Kumar GK, Thomas TD (2013a) Somatic embryogenesis and synthetic seed production in Rhinacanthus nasutus (L.) Kurz. Plant Cell Tiss Organ Cult 113:63–71

    CAS  Google Scholar 

  • Cheruvathur MK, Najeeb N, Thomas TD (2013b) In vitro propagation and conservation of Indian sarsaparilla, Hemidesmus indicus L. R. Br. through somatic embryogenesis and synthetic seed production. Acta Physiol Plant 35:771–779

    CAS  Google Scholar 

  • Chithra M, Martin KP, Sunandakumari C, Madhusoodan PV (2005) Somatic embryogenesis, encapsulation, and plant regeneration of Rotula aquatica Lour. a rare rhoeophytic woody medicinal plant. In Vitro Cell Dev Biol-Plant 41:28–31

    Google Scholar 

  • Coelho N, González-Benito ME, Romano A (2014) Cryopreservation of shoot tips from the endangered endemic species Tuberaria major. Acta Physiol Plant 36:3333–3336

    CAS  Google Scholar 

  • da Silva ALS, Moraes-Fernandes MI, Fereira AG (2000) Ontogenetic events in androgenesis of Brazilian barley genotypes. Rev Braz Biol 60:315–319

    Google Scholar 

  • Daud N, Taha RM, Hasbullah NA (2008) Artificial seed production from encapsulated micro shoots of Saintpaulia ionantha Wendl. (African Violet). J Appl Sci 8:4662–4667

    Google Scholar 

  • Dhir R, Shekhawat GS (2013) Production, storability and morphogenic response of alginate encapsulated axillary meristems and genetic fidelity evaluation of in vitro regenerated Ceropegia bulbosa: a pharmaceutically important threatened plant species. Ind Crops Prod 47:139–144

    CAS  Google Scholar 

  • Dhir R, Shekhawat GS, Alam A (2014) Improved protocol for somatic embryogenesis and calcium alginate encapsulation in Anethum graveolens L.: a medicinal herb. Appl Biochem Biotechnol 173:2267–2278

    CAS  PubMed  Google Scholar 

  • Faisal M, Anis M (2007) Regeneration of plants from alginate-encapsulated shoots of Tylophora indica (Burm. F.) Merrill., an endangered medicinal plant. J Hortic Sci Biotechnol 82:351–354

    CAS  Google Scholar 

  • Faisal M, Alatar AA, Ahmad N, Anis M, Hegazy AK (2012) Assessment of genetic fidelity in Rauvolfia serpentina plantlets grown from synthetic (encapsulated) seeds following in vitro storage at 4 °C. Molecule 17:5050–5061

    CAS  Google Scholar 

  • Faisal M, Alatar AA, Hegazy AK (2013) Molecular and biochemical characterization in Rauvolfia tetraphylla plantlets grown from synthetic seeds following in vitro cold storage. Appl Biochem Biotechnol 169:408–417

    CAS  PubMed  Google Scholar 

  • Fatima N, Ahmad N, Anis M, Ahmad I (2013) An improved in vitro encapsulation protocol, biochemical analysis and genetic integrity using DNA based molecular markers in regenerated plants of Withania somnifera L. Ind Crops Prod 50:468–477

    CAS  Google Scholar 

  • Ganapathi TR, Srinivas L, Suprasanna P, Bapat VA (2001) Regeneration of plants from alginate-encapsulated somatic embryos of banana cv. rasthali (Musa spp. AAB Group). In Vitro Cell Dev Biol-Plant 37:178–181

    CAS  Google Scholar 

  • Gangopadhyay G, Bandyopadhyay T, Ramit P, Gangopadhyay SB, Mukherjee KK (2005) Encapsulation of pineapple microshoots in alginate beads for temporary storage. Curr Sci 88:972–977

    CAS  Google Scholar 

  • Gantait S, Sinniah UR (2013) Storability, post-storage conversion and genetic stability assessment of alginate-encapsulated shoot tips of monopodial orchid hybrid Aranda Wan Chark Kuan ‘Blue’ × Vanda coerulea Grifft. ex. Lindl. Plant Biotechnol Rep 7:257–266

    Google Scholar 

  • Gantait S, Bustam S, Sinniah UR (2012) Alginate-encapsulation, short-term storage and plant regeneration from protocorm-like bodies of Aranda Wan Chark Kuan ‘Blue’ × Vanda coerulea Grifft. ex. Lindl. (Orchidaceae). Plant Growth Regul 68:303–311

    CAS  Google Scholar 

  • Germanà MA, Micheli M, Chiancone B, Macaluso L, Standardi A (2011) Organogenesis and encapsulation of in vitro-derived propagules of Carrizo citrange [(Citrus sinesis (L.) Osb. × Poncirius trifoliate (L.) Raf.]. Plant Cell Tiss Organ Cult 106:299–307

    Google Scholar 

  • Ghosh B, Sen S (1994) Plant regeneration from alginate encapsulated somatic embryos of Asparagus cooperi Baker. Plant Cell Rep 13:381–385

    CAS  PubMed  Google Scholar 

  • Gupta AK, Harish Manoj, Rai Phulwaria M, Agarwal T, Shekhawat NS (2014) In vitro propagation, encapsulation, and genetic fidelity analysis of Terminalia arjuna: a cardioprotective medicinal tree. Appl Biochem Biotechnol 173:1481–1494

    CAS  PubMed  Google Scholar 

  • Hung CD, Trueman SJ (2011) Encapsulation technology for short-term preservation and germplasm distribution of the African mahogany Khaya senegalensis. Plant Cell Tiss Organ Cult 107:397–405

    CAS  Google Scholar 

  • Hung CD, Trueman SJ (2012a) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol Plant 34:117–128

    CAS  Google Scholar 

  • Hung CD, Trueman SJ (2012b) Preservation of encapsulated shoot tips and nodes of the tropical hardwoods Corymbia torelliana × C. citriodora and Khaya senegalensis. Plant Cell Tiss Organ Cult 109:341–352

    Google Scholar 

  • Ilan A, Ziv M, Halevy AH (1995) Propagation and corm development of Brodiaea in liquid cultures. Sci Hortic 63:101–112

    Google Scholar 

  • Ishii Y, Takamura T, Goi M, Tanaka M (1998) Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep 17:446–450

    CAS  Google Scholar 

  • Islam MS, Bari MA (2012) In vitro regeneration protocol for artificial seed production in an important medicinal plant Mentha arvensis L. J Bio Sci 20:99–108

    Google Scholar 

  • Janeiro LV, Ballester A, Vieitez AM (1997) In vitro response of encapsulated somatic embryos of camellia. Plant Cell Tiss Organ Cult 51:119–125

    Google Scholar 

  • Kamada H, Kobayashi K, Kiyosue T, Harada H (1989) Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Dev Biol 25:1163–1166

    Google Scholar 

  • Kavyashree R, Gayatri MC, Revanasiddaiah HM (2006) Propagation of mulberry variety-S54 by synseeds of axillary bud. Plant Cell Tiss Organ Cult 84:245–249

    Google Scholar 

  • Khan MK, Sharma T, Misra P, Shukla PK, Singh Y, Ramteke PW (2013) Production of plantlets on different substrates from encapsulated in vitro nodal explants of Stevia rebaudiana. Int J Recent Sci Res 4:211–215

    Google Scholar 

  • Khor E, Loh CS (2005) Artificial seeds. In: Nedovic V, Willaert R (eds) Applications of cell immobilization biotechnology. Springer, Berlin, pp 527–537

    Google Scholar 

  • Kikowska M, Thiem B (2011) Alginate-encapsulated shoot tips and nodal segments in micropropagation of medicinal plants. A review. Herb Pol 57:45–57

    CAS  Google Scholar 

  • Kim MA, Park JK (2002) High frequency plant regeneration of garlic (Allium sativum L.) calli immobilized in calcium alginate gel. Biotechnol Bioproc Eng 7:206–211

    CAS  Google Scholar 

  • Kitto SL, Janick J (1982) Polyox as an artificial seed coat for a sexual embryos. Hortic Sci 17:448

    Google Scholar 

  • Kumar V, Chandra S (2014) High frequency somatic embryogenesis and synthetic seed production of the endangered species Swertia chirayita. Biologia 69(2):186–192

    CAS  Google Scholar 

  • Kumar GK, Thomas TD (2012) High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn. Plant Cell Tiss Organ Cult 110:141–151

    Google Scholar 

  • Kumar S, Rai MK, Singh N, Mangal M (2010) Alginate-encapsulation of shoot tips of jojoba [Simmondsia chinensis (link) Schneider] for germplasm exchange and distribution. Physiol Mol Biol Plants 16:379–382

    PubMed Central  PubMed  Google Scholar 

  • Kumara Swamy M, Balasubramanya S, Anuradha M (2009) Germplasm conservation of patchouli (Pogostemon cablin Benth.) by encapsulation of in vitro derived nodal segments. Int J Biodivers Conserv 1:224–230

    Google Scholar 

  • Lambardi M, Benelli C, Ozudogru EA, Ozden-Tokatli Y (2006) Synthetic seed technology in ornamental plants. Floricult Ornam Plant Biotechnol 2:347–354

    Google Scholar 

  • Lata H, Chandra S, Khan IA, Elsohly MA (2009) Propagation through alginate encapsulation of axillary buds of Cannabis sativa L.—an important medicinal plant. Physiol Mol Biol Plants 15:79–86

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lata H, Chandra S, Mehmedic Z, Khan IA, El-Sohly MA (2012) In vitro germplasm conservation of high D9-tetrahydrocannabinol yielding elite clones of Cannabis sativa L. under slow growth conditions. Acta Physiol Plant 34:743–750

    CAS  Google Scholar 

  • Malabadi RV, van Staden J (2005) Storability and germination of sodium alginate encapsulated somatic embryos derived from the vegetative shoot apices of mature Pinus patula trees. Plant Cell Tiss Organ Cult 82:259–265

    CAS  Google Scholar 

  • Mandal J, Pattnaik S, Chand PK (2000) Alginate encapsulation of axillary buds of Ocimum americanum L. (Hoary basil), O. basilicum (sweet basil), O. gratissium (shrubby basil) and O. sanctum (sacred basil). In Vitro Cell Dev Biol-Plant 36:287–292

    CAS  Google Scholar 

  • Manjkhola S, Dhar U, Joshi M (2005) Organogenesis, embryogenesis and synthetic seed production in Arnebia euchorma—a critically endangered medicinal plant of the Himalaya. In Vitro Cell Dev Biol-Plant 41:244–248

    Google Scholar 

  • Maqsood M, Mujib A, Siddiqui ZH (2012) Synthetic seed development and conservation to plantlet in Catharanthus roseus (L.). G Don. Biotechnology 11:37–43

    CAS  Google Scholar 

  • Merkle SA, Parrott WA, Williams EG (1990) Applications of somatic embryogenesis and embryo cloning. Plant tissue culture: applications and limitations. Elsevier Science Publishers, New York, pp 67–101

    Google Scholar 

  • Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro-derived explants of olive (Olea europaea L. cv. Moraiolo) II. Effects of storage on capsule and derived shoots performance. Sci Hortic 113:286–292

    Google Scholar 

  • Mishra J, Singh M, Palni LMS, Nandi SK (2011) Assessment of genetic fidelity of encapsulated microshoots of Picrorhiza kurrooa. Plant Cell Tiss Organ Cult 104:181–186

    Google Scholar 

  • Mohanty P, Nongkling P, Das MC, Kumaria S, Tandon P (2013) Short-term storage of alginate-encapsulated protocorm-like bodies of Dendrobium nobile Lindl.: an endangered medicinal orchid from north-east India. 3 Biotech 3:235–239

    PubMed Central  Google Scholar 

  • Murashige T (1977) Plant cell and organ cultures as horticultural practices. Acta Hortic 78:17

    Google Scholar 

  • Murthy KSR, Reddy MC, Kondamudi R (2013) Synthetic seeds - A novel approach for the conservation of endangered C. spiralis wt. and C. pusilla. Bangladesh J Sci Ind Res 48:39–42

    CAS  Google Scholar 

  • Nagesh KS, Shanthamma C, Bhagyalakshmi N (2009) Role of polarity in de novo shoot bud initiation from stem disc explants of Curculigo orchioides Gaertn. and its encapsulation and storability. Acta Physiol Plant 31:699–704

    CAS  Google Scholar 

  • Naik SK, Chand PK (2006) Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Sci Hortic 108:247–252

    CAS  Google Scholar 

  • Nirala NK, Das DK, Reddy MK, Srivastava PS, Sopory SK, Upadhyaya KC (2010) Encapsulated somatic embryos of grape (Vitis vinifera L.): an efficient way for storage, transport and multiplication of pathogen free plant material. Asia Pac J Mol Biol Biotechnol 18:159–162

    Google Scholar 

  • Nishitha IK, Martin KP, Ligimol Beegum AS, Madhusoodanan PV (2006) Microproapagation and encapsulation of medicinally important Chonemorpha grandiflora. In Vitro Cell Dev Biol-Plant 42:385–388

    CAS  Google Scholar 

  • Norstog K (1979) Embryo culture as a tool in the study of comparative and developmental morphology. In: Sharp WR, Larsen PO, Paddock EF, Raghavan V (eds) Plant cell and tissue culture: principles and applications. Ohio State University Press, Columbus, pp 179–202

    Google Scholar 

  • Nower AB (2014) In vitro propagation and synthetic seeds production: an efficient method for Stevia rebaudiana Bertoni. Sugar Tech 16:100–108

    CAS  Google Scholar 

  • Parveen S, Shahzad A (2014) Encapsulation of nodal segments of Cassia angustifolia Vahl. for short-term storage and germplasm exchange. Acta Physiol Plant 36:635–640

    CAS  Google Scholar 

  • Pattnaik SK, Chand PK (2000) Morphogenic response of the alginate-encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell Tiss Organ Cult 60:177–185

    Google Scholar 

  • Phunchindawan M, Hirata K, Sakai A, Miyamoto K (1997) Cryopreservation of encapsulated shoot primordia induced in horseradish (Armoracia rusticana) hairy root cultures. Plant Cell Rep 16:469–473

    CAS  Google Scholar 

  • Piątczak E, Wysokińska H (2013) Encapsulation of Centaurium erythraea Rafn—an efficient method for regeneration of transgenic plants. Acta Biol Crac Ser Bot 55(2):37–44

    Google Scholar 

  • Piccioni E, Standardi A (1995) Encapsulation of micropropagated buds of six woody species. Plant Cell Tiss Organ Cult 42:221–226

    Google Scholar 

  • Pinker I, Abdel-Rahman SSA (2005) Artificial seed for propagation of Dendranthema × grandiflora (Ramat.). Propag Ornam Plants 5:186–191

    Google Scholar 

  • Pond S, Cameron H (2003) Artificial seeds. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences, vol 3. Elsevier, Oxford, pp 1379–1388

    Google Scholar 

  • Prasad A, Singh M, Yadav NP, Mathura AK, Mathura A (2014) Molecular, chemical and biological stability of plants derived from artificial seeds of Centella asiatica (L.) Urban—an industrially important medicinal herb. Ind Crops Prod 60:205–211

    CAS  Google Scholar 

  • Prewein C, Wilhelm E (2003) Plant regeneration from encapsulated somatic embryos of pedunculate oak (Quercus robur L.). In Vitro Cell Dev Biol-Plant 39:613–617

    Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2008) Encapsulation of shoot tips of guava (Psidium guajava L.) for short-term storage and germplasm exchange. Sci Hortic 118:33–38

    CAS  Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679

    PubMed  Google Scholar 

  • Rawat JM, Rawat B, Mehrotra S (2013) Plant regeneration, genetic fidelity, and active ingredient content of encapsulated hairy roots of Picrorhiza kurrooa Royle ex Benth. Biotechnol Lett 35:961–968

    CAS  PubMed  Google Scholar 

  • Ray A, Bhattacharya S (2010) Storage and conversion of Eclipta alba synseeds and RAPD analysis of the converted plantlets. Biol Plant 54:547–550

    CAS  Google Scholar 

  • Redenbaugh K (1990) Application of artificial seeds to tropical crops. Hort Science 25:251–255

    Google Scholar 

  • Redenbaugh K, Nichol J, Kossler ME, Paasch BD (1984) Encapsulation of somatic embryos for artificial seed production. In Vitro Cell Dev Biol-Plant 20:256–257

    Google Scholar 

  • Redenbaugh K, Fujii JA, Slade D (1991) ‘Synthetic seed technology’ in scale-up and automation in plant propagation. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Academic Press, New York, pp 35–74

    Google Scholar 

  • Redenbaugh K, Fujii JA, Slade D (1993) Hydrated coatings formsynthetic seeds. In: Redenbaugh K (ed) Synseeds: application of synthetic seeds to crop improvement. CRC Press, Boca Raton, pp 305–327

    Google Scholar 

  • Remya M, Bai VNV, Mutharaian VN (2013) In vitro regeneration of Aristolochia tagala and production of artificial seeds. Biol Plant 57:210–218

    CAS  Google Scholar 

  • Rizkalla AA, Elden AMB, Ottai MES, Nasr MI, Esmail MNM (2012) Development of artificial seed technology and preservation in sugar beet. Sugar Tech 14:312–320

    CAS  Google Scholar 

  • Saha S, Sengupta C, Ghosh P (2014a) Molecular and phytochemical analyses to assess genetic stability in alginate-encapsulated microshoots of Ocimum gratissimum L. following in vitro storage. Nucleus 57:33–43

    Google Scholar 

  • Saha S, Sengupta C, Ghosh P (2014b) Encapsulation, short-term storage, conservation and molecular analysis to assess genetic stability in alginate-encapsulated microshoots of Ocimum kilimandscharicum Guerke. Plant Cell Tiss Organ Cult doi:10.1007/s11240-014-0618-x

    Google Scholar 

  • Saiprasad GVS (2001) Artificial seeds and their applications. Resonance 5:39–47

    Google Scholar 

  • Saiprasad GVS, Polisetty R (2003) Propagation of three orchid genera using encapsulated protocorm-like bodies. In Vitro Cell Dev Biol-Plant 39:42–48

    Google Scholar 

  • Sakhanokho HF, Pounders CT, Blythe EK (2013) Alginate encapsulation of Begonia microshoots for short-term storage and distribution. Sci World J 2013:1–7

    Google Scholar 

  • Senaratna T (1992) Artificial seeds. Biotechnol Adv 10:379–392

    CAS  PubMed  Google Scholar 

  • Shaheen A, Shahzad A (2015) Nutrient encapsulation of nodal segments of an endangered white cedar for studies of regrowth, short term conservation and ethylene inhibitors influenced ex vitro rooting. Ind Crops Prod 69:204–211

    CAS  Google Scholar 

  • Sharma S, Shahzad A (2012) Encapsulation technology for short-term storage and conservation of a woody climber, Decalepis hamiltonii Wight and Arn. Plant Cell Tiss Organ Cult 111:191–198

    CAS  Google Scholar 

  • Sharma S, Shahzad A, Jan N, Sahai A (2009a) In vitro studies on shoot regeneration through various explants and alginate-encapsulated nodal segments of Spilanthes mauritiana DC., an endangered medicinal herb. Int J Plant Dev Biol 3:56–61

    Google Scholar 

  • Sharma S, Shahzad A, Sahai A (2009b) Artificial seeds for propagation and preservation of Spilanthes acmella (L.) Murr., a threatened pesticidal plant species. Int J Plant Dev Biol 3:62–64

    Google Scholar 

  • Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207

    CAS  PubMed  Google Scholar 

  • Sharma S, Shahzad A, Kumar J, Anis M (2014) In vitro propagation and synseed production of scarlet salvia (Salvia splendens). Rend Fis Acc Lincei 25:359–368

    Google Scholar 

  • Siddique I, Anis M (2009) Morphogenic response of the alginate encapsulated nodal segments and antioxidative enzymes analysis during acclimatization of Ocimum basilicum L. J Crop Sci Biotechnol 12:233–238

    Google Scholar 

  • Singh KK (2008) In vitro plant regeneration of an endangered Sikkim Himalayan rhododendron (R. maddeni Hook. F.) from alginate-encapsulated shoot tips. Biotechnol 7:144–148

    CAS  Google Scholar 

  • Singh AK, Chand S (2010) Plant regeneration from alginate-encapsulated somatic embryos of Dalbergia sissoo Roxb. Indian J Biotechnol 9:319–324

    CAS  Google Scholar 

  • Singh AK, Sharma M, Varshney R, Agarwal SS, Bansal KC (2006a) Plant regeneration from alginate to encapsulated shoot tips of Phyllanthus amarus Schum and Thonn, a medicinally important plant species. In Vitro Cell Dev Biol-Plant 42:109–113

    CAS  Google Scholar 

  • Singh AK, Varshney R, Sharma M, Agarwal SS, Bansal KC (2006b) Regeneration of plants from alginate-encapsulated shoot tips of Withania somnifera (L.) Dunal, a medicinally important plant species. J Plant Physiol 163:220–223

    CAS  PubMed  Google Scholar 

  • Singh B, Sharma S, Rani G, Virk GS, Zaidi AA, Nagpal A (2007) In vitro response of encapsulated and non-encapsulated somatic embryos of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora). Plant Biotechnol Rep 1:101–107

    Google Scholar 

  • Singh SK, Rai MK, Asthana P, Pandey S, Jaiswal VS, Jaiswal U (2009) Plant regeneration from alginate-encapsulated shoot tips of Spilanthes acmella (L.) Murr., a medicinally important and herbal pesticidal plant species. Acta Physiol Plant 31:649–653

    CAS  Google Scholar 

  • Singh SK, Rai MK, Asthana P, Sahoo L (2010) Alginate-encapsulation of nodal segments for propagation, short-term conservation and germplasm exchange and distribution of Eclipta alba (L.). Acta Physiol Plant 32:607–610

    Google Scholar 

  • Srivastava V, Khan SA, Banerjee S (2009) An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following 6  months of storage. Plant Cell Tiss Organ Cult 99:193–198

    CAS  Google Scholar 

  • Standardi A, Piccioni E (1998) Recent perspectives on synthetic seed technology using nonembryogenic in vitro-derived explants. Int J Plant Sci 159:968–978

    Google Scholar 

  • Subhashini Devi P, Satyanarayana B, Arundhati A, Raghava Rao T (2014) Plant regeneration from encapsulated nodal segments of Sterculia urens Roxb., an endangered gum-yielding tree. J Crop Sci Biotech 17:21–25

    Google Scholar 

  • Sudarshana MS, Rajashekar N, Niranjan MH, Borzabad RK (2013) In vitro regeneration of multiple shoots from encapsulated somatic embryos of Artemisia vulgaris, L. IOSR J Pharma Biol Sci 6:11–15

    Google Scholar 

  • Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766

    CAS  Google Scholar 

  • Swamy MK, Balasubramanya S, Anuradha M (2009) Germplasm conservation of patchouli (Pogostemon cablin Benth.) by encapsulation of in vitro derived nodal segments. Int J Biol Control 1:224–230

    Google Scholar 

  • Swaroopa G, Nigam N, Maniyam A (2007) Germplasm conservation of selected lines of Coleus forskohlii (Willd.) Briq by nodal segment encapsulation. Phytomorphol 57:221–225

    Google Scholar 

  • Tabassum B, Nasir IA, Farooq AM, Rehman Z, Latif Z, Husain T (2010) Viability assessment of in vitro produced synthetic seeds of cucumber. Afr J Biotechnol 9:7026–7032

    CAS  Google Scholar 

  • Tsvetkov I, Jouve L, Hausman JF (2006) Effect of alginate matrix composition on re-growth of in vitro-derived encapsulated apical microcuttings of hybrid aspen. Biol Plant 50:722–724

    CAS  Google Scholar 

  • Upadhyay R, Kashyap SP, Singh CS, Tiwari KN, Singh K, Singh M (2014) Ex situ conservation of Phyllanthus fraternus Webster and evaluation of genetic fidelity in regenerates using dna-based molecular marker. Appl Biochem Biotechnol. doi:10.1007/s12010-014-1175-9 

    Google Scholar 

  • Varshney A, Anis M (2014) Synseed conception for short-term storage, germplasm exchange and potentialities of regeneration genetically stable plantlets of desert date tree (Balanites aegyptiaca Del.). Agrofor Syst 88:321–329

    Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Zych M, Furmanowa M, Krajewska-Patan A, Łowicka A, Dreger M, Mendlewska S (2005) Micropropagation of Rhodiola kirilowii plants using encapsulated axillary buds and callus. Acta Biol Crac Ser Bot 47:83–87

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge the library assistance from the Faculty Centre for Integrated Rural Development and Management, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda University.

Conflict of interest

We, the authors of this article, declare that there is not conflict of interest and we do not have any financial gain from it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Gantait.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gantait, S., Kundu, S., Ali, N. et al. Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37, 98 (2015). https://doi.org/10.1007/s11738-015-1847-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1847-2

Keywords

Navigation