Skip to main content
Log in

The Influence of Current Direction on the Cu-Ni Cross-Interaction in Cu/Sn/Ni Diffusion Couples

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The influence of current direction on the Cu-Ni cross-interaction in the Cu/Sn/Ni joint configuration was investigated in this study. During current stressing, an electric current towards or away from the Ni-side of Cu/Sn/Ni was imposed at 150°C. It was observed that the (Cu,Ni)6Sn5 ternary compound was the dominant reaction product at both interfaces, and its growth at the Ni-side strongly depended upon the direction and magnitude of the electron flow. When the electron flow was towards the Ni-side, more Cu was found to be driven to the Ni-side, resulting in an increase in the thickness of (Cu,Ni)6Sn5. This is due to the chemical-potential-induced Cu flux (\( J_{\rm{chem}}^{\rm{Cu}} \)) that was enhanced by the electromigration (\( J_{\rm{em}}^{\rm{Cu}} \)). In the case of electron flow away from the Ni-side, the supply of Cu to the Ni-side was retarded due to the fact that \( J_{\rm{em}}^{\rm{Cu}} \) was in the opposite direction to \( J_{\rm{chem}}^{\rm{Cu}} . \) The results of this study revealed that the Ni-side (Cu,Ni)6Sn5 thickness remained almost unchanged under current stressing of 104 A/cm2 at 150°C, which suggests the inward Cu flux is approximately equal to the outward flux, i.e., \( J_{\rm{chem}}^{\rm{Cu}} \approx J_{\rm{em}}^{\rm{Cu}} . \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Kang, W.K. Choi, D.Y. Shih, P. Lauro, D.W. Henderson, T. Gosselin, and D.N. Leonard, Proceeding of 52nd Electronic Components and Technology Conference (ECTC) (San Diego, May 2002), pp. 146–153.

  2. S.W. Chen, S.H. Wu, and S.W. Lee, J. Electron. Mater. 32, 1188 (2003).

    Article  ADS  Google Scholar 

  3. S.J. Wang and C.Y. Liu, J. Electron. Mater. 32, 1303 (2003).

    Article  CAS  ADS  Google Scholar 

  4. T.L. Shao, T.S. Chen, Y.M. Huang, and C. Chen, J. Mater. Res. 19, 3654 (2004).

    Article  CAS  ADS  Google Scholar 

  5. S.J. Wang and C.Y. Liu, J. Electron. Mater. 35, 1955 (2006).

    Article  CAS  ADS  Google Scholar 

  6. J.Y. Kim, Y.C. Sohn, and J. Yu, J. Mater. Res. 22, 770 (2007).

    Article  CAS  ADS  Google Scholar 

  7. C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci.–Mater. El. 18, 155 (2007).

    Article  CAS  Google Scholar 

  8. H.T. Chen, C.Q. Wang, C. Yan, M.Y. Li, and Y. Huang, J.␣Electron. Mater. 36, 26 (2007).

    Article  ADS  Google Scholar 

  9. Y. Xia, C. Lu, J. Chang, and X. Xie, J. Electron. Mater. 35, 897 (2006).

    Article  CAS  ADS  Google Scholar 

  10. C.W. Chang, S.C. Yang, C.T. Tu, and C.R. Kao, J. Electron. Mater. 36, 1455 (2007).

    Article  CAS  ADS  Google Scholar 

  11. K.K. Hong, J.B. Ryu, C.Y. Park, and J.Y. Huh, J. Electron. Mater. 37, 61 (2008).

    Article  CAS  ADS  Google Scholar 

  12. J.W. Jang, J.K. Lin, and D.R. Frear, J. Electron. Mater. 36, 207 (2007).

    Article  CAS  ADS  Google Scholar 

  13. J.Y. Tsai, Y.C. Hu, C.M. Tsai, and C.R. Kao, J. Electron. Mater. 32, 1203 (2003).

    Article  CAS  ADS  Google Scholar 

  14. S. Ahat, M. Sheng, and L. Luo, J. Electron. Mater. 30, 1317 (2001).

    Article  CAS  ADS  Google Scholar 

  15. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T.␣Gosselin, S. Cho, J. Yu, and W.K. Choi, JOM 56, 34 (2004).

    Article  CAS  Google Scholar 

  16. P.T. Vianco, J.A. Rejent, and P.F. Hlava, J. Electron. Mater. 33, 991 (2004).

    Article  CAS  ADS  Google Scholar 

  17. K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K.N. Tu, J. Appl. Phys. 97, 024508 (2005).

    Article  ADS  Google Scholar 

  18. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R49, 1 (2005).

    CAS  Google Scholar 

  19. S.W. Chen, C.M. Chen, and W.C. Liu, J. Electron. Mater. 27, 1193 (1998).

    Article  CAS  ADS  Google Scholar 

  20. H. Gan and K.N. Tu, J. Appl. Phys. 97, 063514-1 (2005).

    ADS  Google Scholar 

  21. C.Y. Liu, L. Ke, Y.C. Chuang, and S.J. Wang, J. Appl. Phys. 100, 083702-1 (2006).

    ADS  Google Scholar 

  22. B. Chao, S.H. Chae, X. Zhang, K.H. Lu, M. Ding, J. Im, and P.S. Ho, J. Appl. Phys. 100, 084909-1 (2006).

    Article  ADS  Google Scholar 

  23. S.W. Chen and C.H. Wang, J. Mater. Res. 22, 695 (2007).

    Article  CAS  ADS  Google Scholar 

  24. K.N. Tu, Solder Joint Technology-Materials, Properties, and Reliability (New York: Springer Press, 2007).

    Google Scholar 

  25. C.M. Chen and S.W. Chen, J. Appl. Phys. 90, 1208 (2001).

    Article  CAS  ADS  Google Scholar 

  26. S.W. Chen and C.M. Chen, JOM 55, 62 (2003).

    Article  CAS  Google Scholar 

  27. M.Y. Du, C.M. Chen, and S.W. Chen, Mater. Chem. Phys. 82, 818 (2003).

    Article  CAS  Google Scholar 

  28. L.T. Chen and C.M. Chen, J. Mater. Res. 21, 962 (2006).

    Article  CAS  ADS  Google Scholar 

  29. C.E. Ho, A. Lee, and K.N. Subramanian, J. Mater. Sci.–Mater. El. 18, 569 (2007).

    Article  CAS  Google Scholar 

  30. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).

    Article  CAS  ADS  Google Scholar 

  31. L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, and L. Nguyen, J. Appl. Phys. 88, 012106-1 (2006).

    Google Scholar 

  32. Y.H. Lin, Y.C. Hu, C.M. Tsai, C.R. Kao, and K.N. Tu, Acta Mater. 53, 2029 (2005).

    CAS  Google Scholar 

  33. C. Chen and S.W. Liang, J. Mater. Sci.–Mater. El. 18, 259 (2007).

    Article  CAS  MathSciNet  Google Scholar 

  34. H. Ye, C. Basaran, and D.C. Hopkins, Appl. Phys. Lett. 82, 1045 (2003).

    Article  CAS  ADS  Google Scholar 

  35. Y.C. Chuang and C.Y. Liu, Appl. Phys. Lett. 88, 174105-1 (2006).

    Article  ADS  Google Scholar 

  36. A. Lee, C.E. Ho, and K.N. Subramanian, J. Mater. Res. 22, 3265 (2007).

    Article  CAS  ADS  Google Scholar 

  37. H.K. Kim, H.K. Liou, and K.N. Tu, Appl. Phys. Lett. 66, 2337 (1995).

    Article  CAS  ADS  Google Scholar 

  38. H.K. Kim and K.N. Tu, Phys. Rev. B 53, 16027 (1996).

    Article  CAS  ADS  Google Scholar 

  39. K. Zeng and K.N. Tu, Mater. Sci. Eng. R38, 55 (2002).

    CAS  Google Scholar 

  40. K.N. Tu and K. Zeng, Mater. Sci. Eng. R34, 1 (2001).

    CAS  Google Scholar 

  41. C.E. Ho, Y.L. Lin, and C.R. Kao, Chem. Mater. 14, 949 (2002).

    Article  CAS  Google Scholar 

  42. H.P.R. Frederikse, R.J. Fields, and A. Feldman, J. Appl. Phys. 72, 2879 (1992).

    Article  CAS  ADS  Google Scholar 

  43. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  CAS  ADS  Google Scholar 

  44. L. Snugovsky, C. Cermignani, D.D. Perovic, and J.W. Rutter, J. Electron. Mater. 33, 1313 (2004).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.E. Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Chung, H., Chen, C. et al. The Influence of Current Direction on the Cu-Ni Cross-Interaction in Cu/Sn/Ni Diffusion Couples. J. Electron. Mater. 38, 2563–2572 (2009). https://doi.org/10.1007/s11664-009-0876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0876-2

Keywords

Navigation