Skip to main content
Log in

Atomic Flux of Cu Diffusion into Sn During Interfacial Interactions Between Cu and Sn Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Diffusion of Cu inside Sn was studied through interfacial interactions between Cu and Sn nanoparticles without using any soldering additives. The studies conducted in this research revealed that the diffusion of Cu towards Sn nanoparticles was as high as 30 nm and 84 nm, respectively, when the Cu and Sn nanoparticles were heated at 150°C and 210°C under H2/N2. The atomic flux of Cu diffusion into the Sn nanoparticles during interfacial reactions at 150°C was higher than that of the Cu diffusion into bulk Sn. High Cu flux resulted in the formation of intermetallic compounds Cu6Sn5 at 150°C and Cu6Sn5 and Cu3Sn at 210°C without an observable diffusion layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bigas and E. Cabruja, Microelectron. J. 83, 399 (2006).

    Article  Google Scholar 

  2. M. Date, K.N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, J. Mater. Res. 19, 2887 (2004).

    Article  Google Scholar 

  3. K.N. Tu, Mater. Chem. Phys. 46, 217 (1996).

    Article  Google Scholar 

  4. H. Jiang, K.S. Moon, F. Hua, and C.P. Wong, Chem. Mater. 19, 4482 (2007).

    Article  Google Scholar 

  5. F. Mafune, J.Y. Khono, Y. Takeda, and T. Kondow, J. Am. Chem. Soc. 125, 1686 (2003).

    Article  Google Scholar 

  6. D.C. Lin, T.S. Srivatsan, G.-X. Wang, and R. Kovacevic, JMEPEG 16, 647 (2007).

    Article  Google Scholar 

  7. P.L. Hansen, J.B. Wagner, S. Helveg, J.R.R. Nielsen, B.S. Clausen, and H. Topsee, Science 295, 2053 (2002).

    Article  Google Scholar 

  8. H. Shao, Y. Wang, H. Xu, and X. Li, J. Solid State Chem. 178, 2211 (2005).

    Article  Google Scholar 

  9. H. Shao, T. Liu, X. Li, and L. Zhang, Scripta Mater. 49, 595 (2003).

    Article  Google Scholar 

  10. H.K. Kim and K.N. Tu, Phys. Rev. B 53, 4 (1996).

    Google Scholar 

  11. S.J. Wang and C.Y. Liu, J. Electronic Mater. 32, 1303 (2003).

    Article  Google Scholar 

  12. K.N. Tu, Acta Metall. 21, 347 (1973).

    Article  Google Scholar 

  13. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C.P. Wong, J. Electron. Mater. 34, 168 (2005).

    Article  Google Scholar 

  14. O. Kubaschewek and C.B. Alcock, Metallurgical Thermochemistry, 5th ed. (Oxford: Paragamon Press, 1979), p. p333.

    Google Scholar 

  15. J. Mittal and K.L. Lin, Mater. Character. 109, 19 (2015).

    Article  Google Scholar 

  16. P. Song and D. Wen, J. Phys. Chem. C 113, 13470 (2009).

    Article  Google Scholar 

  17. K.S. Jiang, H. Moon, F. Dong, and C.P. Hua, Wong. Chem. Phys. Lett. 429, 492 (2006).

    Article  Google Scholar 

  18. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  Google Scholar 

  19. B. Chao, S.H. Chae, X. Zhang, K.H. Lu, J. Im, and P.S. Ho, Acta Mater. 55, 2805 (2007).

    Article  Google Scholar 

  20. Z. Mei, A.J. Sunwoo, and J.W. Morris, Metall. Trans. A 23A, 857 (1992).

    Article  Google Scholar 

  21. J. Mittal and K.L. Lin, Solder. Surf. Mount Tech. 26, 87 (2014).

    Article  Google Scholar 

  22. A.K. Larsson, L. Stenberg, and S. Lidin, Acta Cryst. B. Struc. Sci. 50, 636 (1994).

    Article  Google Scholar 

  23. N.T.S. Lee, V.B.C. Tan, and K.M. Lim, Appl. Phys. Lett. 88, 031913 (2006).

    Article  Google Scholar 

  24. K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, and S. Stappert, Phys. Rev. Lett. 91, 106102 (2013).

    Article  Google Scholar 

  25. P.K. Khanna, S. Gaikwad, P.V. Adhyapak, N. Singh, and R. Marimuthu, Mater. Lett. 61, 4711 (2007).

    Article  Google Scholar 

  26. Z. Li, X. Tao, Y. Cheng, Z. Wu, Z. Zhang, and H. Dang, Ultrason. Sonochem. 14, 89 (2007).

    Article  Google Scholar 

  27. S. Bader, W. Gust, and H. Hieber, Acta Metall. Mater. 43, 329 (1995).

    Google Scholar 

  28. D.R. Frear and P.T. Vianco, Metallur. Mater. Trans. A 25A, 1509 (1994).

    Article  Google Scholar 

  29. C.C. Pan, C.H. Yu, and K.L. Lin, Appl. Phys. Lett. 93, 061912 (2008).

    Article  Google Scholar 

  30. K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, and S. Stappert, Physics. Phys. Rev. Lett. 91, 106102 (2003).

    Article  Google Scholar 

  31. C.K. Hu, R. Rosenberg, and K.Y. Lee, Appl. Phys. Lett. 74, 2945 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The support of this study by the Ministry of Science and Technology (MOST) of the Republic of China (Taiwan) under Grant NSC101-2221-E006-117-MY3 is gratefully acknowledged. One of the authors (J. Mittal) greatly appreciates his financial support under Grant NSC102-2811–E-006-048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagjiwan Mittal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, J., Lin, KL. Atomic Flux of Cu Diffusion into Sn During Interfacial Interactions Between Cu and Sn Nanoparticles. J. Electron. Mater. 46, 602–608 (2017). https://doi.org/10.1007/s11664-016-4957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4957-8

Keywords

Navigation