Skip to main content
Log in

In situ observation of the dissolution kinetics of Al2O3 particles in CaO-Al2O3-SiO2 slags using laser confocal scanning microscopy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The dissolution kinetics of Al2O3 in CaO-Al2O3-SiO2 slags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K. The results show that the controlling step during the Al2O3 dissolution was the diffusion in molten slag. It was found that the dissolution curves of Al2O3 particles were hardly agreed with the traditional boundary layer diffusion model with the increase of the CaO/Al2O3 ratio of slag. A modified diffusion equation considering slag viscosity was developed to study the dissolution mechanism of Al2O3 in slag. Diffusion coefficients of Al2O3 in slag were calculated as 2.8 × 10−10 to 4.1 × 10−10 m2/s at the temperature of 1773–1873 K. The dissolution rate of Al2O3 increased with higher temperature, CaO/Al2O3, and particle size. A new model was shown to be \({v_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}} = 0.16 \times r_0^{1.58} \times {x^{3.52}} \times {\left( {T - {T_{{\rm{mp}}}}} \right)^{1.11}}\) to predict the dissolution rate and the total dissolution time of Al2O3 inclusions with various sizes, where \({v_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}\) is the dissolution rate of Al2O3 in volume, µm3/s; x is the value of CaO/Al2O3 mass ratio; R0 is the initial radius of Al2O3, µm; T is the temperature, K; Tmp is the melting point of slag, K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Zhang and B.G. Thomas, State of the art in evaluation and control of steel cleanliness, ISIJ Int., 43(2003), No. 3, p. 271.

    Article  CAS  Google Scholar 

  2. L.F. Zhang. Non-metallic Inclusions in Steels: Industrial Practice, Metallurgical Industry Press, Beijing, 2019.

    Google Scholar 

  3. L.F. Zhang. Non-metallic Inclusions in Steels: Fundamentals, Metallurgical Industry Press, Beijing, 2019.

    Google Scholar 

  4. C. Gu, W.Q. Liu, J.H. Lian, and Y.P. Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 826.

    Article  Google Scholar 

  5. W. Xiao, Y.P. Bao, C. Gu, M. Wang, Y. Liu, Y.S. Huang, and G.T. Sun, Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 804.

    Article  Google Scholar 

  6. L.F. Zhang and B.G. Thomas, State of the art in the control of inclusions during steel ingot casting, Metall. Mater. Trans. B, 37(2006), No. 5, p. 733.

    Article  Google Scholar 

  7. A.L.V. da Costa e Silva, Non-metallic inclusions in steels — origin and control, J. Mater. Res. Technol., 7(2018), No. 3, p. 283.

    Article  Google Scholar 

  8. J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298.

    Article  Google Scholar 

  9. M. Jiang, J.C. Liu, K.L. Li, R.G. Wang, and X.H. Wang, Formation mechanism of large CaO-SiO2-Al2O3 inclusions in Si-deoxidized spring steel refined by low basicity slag, Metall. Mater. Trans. B, 52(2021), No. 4, p. 1950.

    Article  CAS  Google Scholar 

  10. Y. Liu, X. Zhang, P. Wang, and D.Z. Li, Investigation on inclusions in non-oriented silicon steels, Metall. Mater. Trans. B, 51(2020), No. 1, p. 22.

    Article  CAS  Google Scholar 

  11. L.F. Zhang, S. Taniguchi, and K.K. Cai, Fluid flow and inclusion removal in continuous casting tundish, Metall. Mater. Trans. B, 31(2000), No. 2, p. 253.

    Article  Google Scholar 

  12. F. Yuan, A.J. Xu, and M.Q. Gu, Development of an improved CBR model for predicting steel temperature in ladle furnace refining, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1321.

    Article  Google Scholar 

  13. H.X. Yu, D.X. Yang, J.M. Zhang, G.Y. Qiu, and N. Zhang, Effect of Al content on the reaction between Fe-10Mn-xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO-SiO2-Al2O3-MgO slag, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 256.

    Article  CAS  Google Scholar 

  14. L.X. Zhang, M. Chen, M.Y. Huang, N. Wang, and C. Wang, Dissolution kinetics of SiO2 in FeO-SiO2-V2O3-CaO-MnO-Cr2O3-TiO2 system with different FeO contents, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2703.

    Article  CAS  Google Scholar 

  15. G.J. Chen, S.P. He, and Q. Wang, Dissolution behavior of Al2O3 into tundish slag for high-Al steel, J. Mater. Res. Technol., 9(2020), No. 5, p. 11311.

    Article  CAS  Google Scholar 

  16. Z.R. Li, B.R. Jia, Y.B. Zhang, S.P. He, Q.Q. Wang, and Q. Wang, Dissolution behaviour of Al2O3 in mould fluxes with low SiO2 content, Ceram. Int., 45(2019), No. 3, p. 4035.

    Article  CAS  Google Scholar 

  17. G. Tripathi, A. Malfliet, B. Blanpain, and M.X. Guo, Dissolution behavior and phase evolution during aluminum oxide dissolution in BOF slag, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1782.

    Article  CAS  Google Scholar 

  18. Y.J. Park, Y.M. Cho, W.Y. Cha, and Y.B. Kang, Dissolution kinetics of alumina in molten CaO-Al2O3-FetO-MgO-SiO2 oxide representing the RH slag in steelmaking process, J. Am. Ceram. Soc., 103(2020), No. 3, p. 2210.

    Article  CAS  Google Scholar 

  19. S. Sridhar and A.W. Cramb, Kinetics of Al2O3 dissolution in CaO-MgO-SiO2-Al2O3 slags: In situ observations and analysis, Metall. Mater. Trans. B, 31(2000), No. 2, p. 406.

    Article  Google Scholar 

  20. J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants, In situ observation of the direct and indirect dissolution of MgO particles in CaO-Al2O3-SiO2-based slags, J. Eur. Ceram. Soc., 27(2007), No. 4, p. 1961.

    Article  CAS  Google Scholar 

  21. J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, and Y.B. Kang, In situ observation of the dissolution phenomena of SiC particle in CaO-SiO2-MnO slag, J. Eur. Ceram. Soc., 30(2010), No. 15, p. 3181.

    Article  CAS  Google Scholar 

  22. S. Feichtinger, S.K. Michelic, Y.B. Kang, and C. Bernhard, In situ observation of the dissolution of SiO2 particles in CaO-Al2O3-SiO2 slags and mathematical analysis of its dissolution pattern, J. Am. Ceram. Soc., 97(2014), No. 1, p. 316.

    Article  CAS  Google Scholar 

  23. Y. Lee, J.K. Yang, D.J. Min, and J.H. Park, Mechanism of MgO dissolution in MgF2-CaF2-MF (M = Li or Na) melts: Kinetic analysis via in situ high temperature confocal scanning laser microscopy (HT-CSLM), Ceram. Int., 45(2019), No. 16, p. 20251.

    Article  CAS  Google Scholar 

  24. M. Sharma and N. Dogan, Dissolution behavior of aluminum titanate inclusions in steelmaking slags, Metall. Mater. Trans. B, 51(2020), No. 2, p. 570.

    Article  CAS  Google Scholar 

  25. K.Y. Miao, A. Haas, M. Sharma, W.Z. Mu, and N. Dogan, In situ observation of calcium aluminate inclusions dissolution into steelmaking slag, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1612.

    Article  CAS  Google Scholar 

  26. T.L. Tian, Y.Z. Zhang, H.H. Zhang, K.X. Zhang, J. Li, and H. Wang, Dissolution behavior of SiO2 in the molten blast furnace slags, Int. J. Appl. Ceram. Technol., 16(2019), No. 3, p. 1078.

    Article  CAS  Google Scholar 

  27. C.Y. Ren, L.F. Zhang, J. Zhang, S.J. Wu, P. Zhu, and Y. Ren, In situ observation of the dissolution of Al2O3 particles in CaO-Al2O3-SiO2 slags, Metall. Mater. Trans. B, 52(2021), No. 5, p. 3288.

    Article  CAS  Google Scholar 

  28. Y. Kim, Y. Kashiwaya, and Y. Chung, Effect of varying Al2O3 contents of CaO-Al2O3-SiO2 slags on lumped MgO dissolution, Ceram. Int., 46(2020), No. 5, p. 6205.

    Article  CAS  Google Scholar 

  29. W.Z. Mu and C.J. Xuan, Phase-field study of dissolution behaviors of different oxide particles into oxide melts, Ceram. Int., 46(2020), No. 10, p. 14949.

    Article  CAS  Google Scholar 

  30. C.J. Xuan and W.Z. Mu, A phase-field model for the study of isothermal dissolution behavior of alumina particles into molten silicates, J. Am. Ceram. Soc., 102(2019), No. 11, p. 6480.

    Article  CAS  Google Scholar 

  31. J.J. Liu, J. Zou, M.X. Guo, and N. Moelans, Phase field simulation study of the dissolution behavior of Al2O3 into CaO-Al2O3-SiO2 slags, Comput. Mater. Sci., 119(2016), p. 9.

    Article  Google Scholar 

  32. J. Heulens, B. Blanpain, and N. Moelans, A phase field model for isothermal crystallization of oxide melts, Acta Mater., 59(2011), No. 5, p. 2156.

    Article  CAS  Google Scholar 

  33. Z.J. Wang and I. Sohn, A review of in situ observations of crystallization and growth in high temperature oxide melts, JOM, 70(2018), No. 7, p. 1210.

    Article  CAS  Google Scholar 

  34. I. Sohn and R. Dippenaar, In-situ observation of crystallization and growth in high-temperature melts using the confocal laser microscope, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2083.

    Article  CAS  Google Scholar 

  35. D.C. Fu, G.H. Wen, X.Q. Zhu, J.L. Guo, and P. Tang, Modification for prediction model of austenite grain size at surface of microalloyed steel slabs based on in situ observation, J. Iron Steel Res. Int., 28(2021), No. 9, p. 1133.

    Article  CAS  Google Scholar 

  36. Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and J. Li, In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel, Metall. Mater. Trans. B, 49(2018), No. 6, p. 3137.

    Article  CAS  Google Scholar 

  37. Y.G. Wang and C.J. Liu, Agglomeration characteristics of various oxide inclusions in molten steel containing rare earth element under different deoxidation conditions, ISIJ Int., 61(2021), No. 5, p. 1396.

    Article  CAS  Google Scholar 

  38. W.Z. Mu and C.J. Xuan, Agglomeration mechanism of complex Ti-Al oxides in liquid ferrous alloys considering high-temperature interfacial phenomenon, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2694.

    Article  CAS  Google Scholar 

  39. X.J. Zhao, Z.N. Yang, and F.C. Zhang, In situ observation of the effect of AIN particles on bainitic transformation in a carbide-free medium carbon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 620.

    Article  CAS  Google Scholar 

  40. J. Guo, X.R. Chen, S.W. Han, Y. Yan, and H.J. Guo, Evolution of plasticized MnO-Al2O3-SiO2-based nonmetallic inclusion in 18wt%Cr-8wt%Ni stainless steel and its properties during soaking process, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 328.

    Article  CAS  Google Scholar 

  41. A.B. Fox, M.E. Valdez, J. Gisby, R.C. Atwood, P.D. Lee, and S. Sridhar, Dissolution of ZrO2, Al2O3, MgO and MgAl2O4 particles in a B2O3 containing commercial fluoride-free mould slag, ISIJ Int., 44(2004), No. 5, p. 836.

    Article  CAS  Google Scholar 

  42. J.H. Park and L.F. Zhang, Kinetic modeling of nonmetallic inclusions behavior in molten steel: A review, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2453.

    Article  CAS  Google Scholar 

  43. S. Lyu, X.D. Ma, Z.Z. Huang, Z. Yao, H.G. Lee, Z.H. Jiang, G. Wang, J. Zou, and B.J. Zhao, Formation mechanism of Al2O3-containing inclusions in Al-deoxidized spring steel, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2205.

    Article  CAS  Google Scholar 

  44. O. Levenspiel, Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, Inc., the United States of America, 1999.

    Google Scholar 

  45. M.J. Whelan, On the kinetics of precipitate dissolution, Met. Sci. J., 3(1969), No. 1, p. 95.

    Article  CAS  Google Scholar 

  46. H.B. Aaron, D. Fainstein, and G.R. Kotler, Diffusion-limited phase transformations: A comparison and critical evaluation of the mathematical approximations, J. Appl. Phys., 41(1970), No. 11, p. 4404.

    Article  Google Scholar 

  47. L.C. Brown, Diffusion-controlled dissolution of planar, cylindrical, and spherical precipitates, J. Appl. Phys., 47(1976), No. 2, p. 449.

    Article  Google Scholar 

  48. F. Verhaeghe, S. Arnout, B. Blanpain, and P. Wollants, Lattice-Boltzmann modeling of dissolution phenomena, Phys. Rev. E, 73(2006), No. 3, art. No. 036316.

  49. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189.

    Article  CAS  Google Scholar 

  50. K.C. Mills and B.J. Keene, Physical properties of BOS slags, Int. Mater. Rev., 32(1987), No. 1, p. 1.

    Article  CAS  Google Scholar 

  51. J. Ahrendts and S. Kabelac. Technische thermodynamik, [in] H. Czichos and M. Hennecke, eds., Hütte — Das Ingenieurwissen, Springer Berlin, Heidelberg, 2012, p. 925.

    Chapter  Google Scholar 

  52. B.J. Monaghan and L. Chen, Dissolution behavior of alumina micro-particles in CaO-SiO2-Al2O3 liquid oxide, J. Non Cryst. Solids, 347(2004), No. 1–3, p. 254.

    Article  CAS  Google Scholar 

  53. M. Valdez, G.S. Shannon, and S. Sridhar, The ability of slags to absorb solid oxide inclusions, ISIJ Int., 46(2006), No. 3, p. 450.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Nos. U1860206 and 51725402), the Science and Technology Program of Hebei, China (Nos. 20311006D and 20591001D). The authors are also grateful for support from the High Steel Center (HSC) at North China University of Technology, University of Science and Technology Beijing (USTB), and Yanshan University, and the Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM), USTB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Zhang or Ying Ren.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., Huang, C., Zhang, L. et al. In situ observation of the dissolution kinetics of Al2O3 particles in CaO-Al2O3-SiO2 slags using laser confocal scanning microscopy. Int J Miner Metall Mater 30, 345–353 (2023). https://doi.org/10.1007/s12613-021-2347-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2347-6

Keywords

Navigation