Skip to main content
Log in

Effect of Compositional Variation on the Microstructural Evolution and the Castability of Al–Mg–Si Ternary Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study examined the microstructural evolution and castability of Al–Mg–Si ternary alloys with varying Si contents. Al–6Mg–xSi alloys (where x = 0, 1, 3, 5, and 7; all compositions in mass pct) were examined, with Al–6 mass pct Mg as a base alloy. The results showed that in the ternary alloys with Si ≤ 3 pct, the solidification process ended with the formation of eutectic α-Al–Mg2Si phases generated by a univariant reaction. However, in the case of ternary alloys with Si > 3 pct, solidification was completed with the formation of α-Al–Mg2Si–Si ternary eutectic phases generated by a three-phase invariant reaction. In addition to the eutectic Mg2Si phases, the primary Mg2Si phases formed in each of the ternary alloys, and the size of both sets of phases increased with increasing Si content. The two-phase eutectic α-Al–Mg2Si nucleated from the primary Mg2Si phases. The inoculated Al–6Mg–1Si alloy had the smallest grain size. Moreover, the grain-refining efficacy of the Al–5Ti–B master alloy in the ternary alloys decreased with increasing Si content in the alloys. Despite the poisoning effect of Si on the potency of TiB2 compounds in the inoculated Al–6Mg–1Si alloy, the grain size of the alloy was slightly smaller than that of the Al–6Mg binary alloy. This resulted from the increasing growth restriction factor (induced by Si addition) of the Al–6Mg–1Si alloy. In terms of the castability, the examined alloys showed different levels of susceptibility to hot tearing. Among the alloys, the ternary Al–6Mg–5Si alloy exhibited the highest susceptibility to hot tearing, whereas the Al–6Mg–7Si exhibited the lowest. The severity of hot tearing initiated by the unraveling of the bifilm was determined by the freezing range, grain size, and the amount of eutectic phases at the end of the solidification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. [1] S. Ji, Y. Wang, D. Watson, Z. Fan: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 3185–3197.

    Article  Google Scholar 

  2. [2] S. Ji, D. Watson, Z. Fan, M. White: Mater. Sci. Eng. A, 2012, Vol. 556, pp. 824–833.

    Article  CAS  Google Scholar 

  3. [3] F. Yan, S.X. Ji, Z.Y. Fan: Mater. Sci. Forum, 2013, Vol. 765, pp. 64–68.

    Article  Google Scholar 

  4. [4] X. Zhu, H. Yang, X. Dong, S. Ji: J. Mater. Sci., 2019, vol. 54, pp. 5773–5787.

    Article  CAS  Google Scholar 

  5. [5] L. Li, S. Ji, Q. Zhu, Y. Wang, X. Dong, W. Yang, S. Midson, Y. Kang: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 3247–3256.

    Article  Google Scholar 

  6. [6] M. Tebib, F. Ajersch, A.M. Samuel, X.G. Chen: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 4282–4295.

    Article  Google Scholar 

  7. [7] M. Azarbarmas, M. Emamy, M. Alipour: J. Mater. Sci., 2011, Vol. 46, pp. 6856–6862.

    Article  CAS  Google Scholar 

  8. [8] S. Li, S. Zhao, M. Pan, D. Chen, O. M. Barabash, R.I. Barabash: Mater. Trans., 1997, Vol. 38, pp. 553–559.

    Article  CAS  Google Scholar 

  9. [9] N. A. Belov, D.G. Eskin, A.A. Aksenov: Multicomponent phase diagrams: applications for commercial aluminum alloys, 1st ed., Elsevier, Oxford, 2005, pp. 48–52.

    Google Scholar 

  10. [10] C. Li, Y.Y. Wu, H. Li, X.F. Liu: Acta. Mater., 2011, vol. 59, pp. 1058–1067.

    Article  CAS  Google Scholar 

  11. [11] S.P. Li, S.X. Zhao, M.X. Pan, D.Q. Zhao, X.C. Chen, O.M. Barabash: J. Mater. Sci., 2001, vol. 36, pp. 1569–1575.

    Article  CAS  Google Scholar 

  12. [12] L. Bolzoni, N.H. Babu: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 746–756.

    Article  Google Scholar 

  13. [13] K.R. Ravi, S. Manivannan, G. Phanikumar, B.S. Murty, S. Sundarraj: Metall. Mater. Trans. A, 2011, Vol. 42A, pp. 2028–2039.

    Article  Google Scholar 

  14. [14] F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang: Metall. Mater. Trans. A, 2014, Vol. 46A, pp. 505–515.

    Google Scholar 

  15. [15] Y. Xu, D. Zhao, Y. Li: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 1770–1781.

    Article  Google Scholar 

  16. [16] Q.L. Bai, Y. Li, H.X. Li, Q. Du, J.S. Zhang, L.Z. Zhuang: Metall. Mater. Trans. A, 2016, Vol. 47A, pp. 4080–4091.

    Article  Google Scholar 

  17. [17] Y. Li, X. Gao, Z.R. Zhang, W.L. Xiao, H.X. Li, Q. Du, L. Katgerman, J.S. Zhang, L.Z. Zhuang: Metall. Mater. Trans. A, 2017, Vol. 48A, pp. 4744–4754.

    Article  Google Scholar 

  18. [18] Y. Li, Z.R. Zhang, Z.Y. Zhao, H.X. Li, L. Katgerman, J.S. Zhang, L.Z. Zhuang: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 3603–3616.

    Article  Google Scholar 

  19. [19] M.F. Ourfali, I. Todd, H. Jones: Metall. Mater. Trans. A, 2005, Vol. 36A, pp. 1368–1372.

    Article  CAS  Google Scholar 

  20. [20] M. Uludag, R. Cetin, D. Dispinar: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 1948–1961.

    Article  Google Scholar 

  21. G.E. Totten and D.S. Mackenzie: Handbook of Aluminum: physical metallurgy and processes, vol. 1, Marcel Dekker Inc., New York, 2003, pp. 490–491 and 348.

  22. Y.C. Lee, A.K. Dahle, D.H. StJohn, J.E.C. Hutt: Mater. Sci. Eng., A, 1999, vol. 259, pp. 43–52.

  23. [23] A.W. Shah, S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, S.K. Kim: Metall. Mater. Trans. A, 2020, vol. 38, 1056–1068.

    Google Scholar 

  24. [24] X. Dore, H. Combeau, M. Rappaz: Acta Mater., 2000, Vol. 48, pp. 3951–3962.

    Article  CAS  Google Scholar 

  25. [25] S. Kumar and K.A.Q. O’Reilly: Mater. Charact., 2016. 120, pp. 311–322.

    Article  CAS  Google Scholar 

  26. [26] M.A. Easton, H. Wang, J. Grandfield, C.J. Davidson, D.H. StJohn, L. Sweet, M.J. Couper: Metall. Mater. Trans. A, 2012. vol. 43A, pp. 3227–3238.

    Article  Google Scholar 

  27. [27] S. Lin, C. Aliravci, M. O. Pekguleryuz: Metall. Mater. Trans. A, 2007, vol. 38A, 1056–1068.

    Article  CAS  Google Scholar 

  28. [28] D.G. Eskin, Suyitno, L. Katgerman: Prog. Mater. Sci., 2004, Vol. 49, pp. 629–711.

    Article  CAS  Google Scholar 

  29. J. Campbell: Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, 1st ed., Elsevier, Oxford, 2011, pp. 465–495 and pp. 298–302.

  30. [30] N. Coniglio and C.E. Cross: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 2718–2728.

    Article  CAS  Google Scholar 

  31. [31] S. Kou: Acta. Mater., 2015, vol. 88, pp. 366–374.

    Article  CAS  Google Scholar 

  32. [32] E.F. Chirkov: Mater. Forum, 2004, vol. 28, pp. 692–99.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by UST Young Scientist Research Program 2020 through the University of Science and Technology (No. IJ200030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ho Ha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 28, 2020; accepted April 22, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.W., Ha, SH., Kim, BH. et al. Effect of Compositional Variation on the Microstructural Evolution and the Castability of Al–Mg–Si Ternary Alloys. Metall Mater Trans A 52, 3353–3365 (2021). https://doi.org/10.1007/s11661-021-06306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06306-5

Navigation