Skip to main content
Log in

Roles of Alloy Composition and Grain Refinement on Hot Tearing Susceptibility of 7××× Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

During the production of high-strength 7××× aluminum alloys, hot tearing has set up serious obstacles for attaining a sound billet/slab. In this research, some typical 7××× alloys were studied using constrained rod casting together with the measurement of thermal contraction and load development in the freezing range, aiming at investigating their hot tearing susceptibility. The results showed that the hot tearing susceptibility of an alloy depends not only on the thermal contraction in freezing range, which can decide the accumulated thermal strain during solidification, but also on the amount of nonequilibrium eutectics, which can effectively accommodate the thermally induced deformation. Our investigations reveal that Zn content has very profound effect on hot tearing susceptibility. The Zn/Mg ratio of the alloys also plays a remarkable role though it is not as pronounced as Zn content. The effect of Zn/Mg ratio is mainly associated with the amount of nonequilibrium eutectics. Grain refinement will considerably reduce the hot tearing susceptibility. However, excessive addition of grain refiner may promote hot tearing susceptibility of semi-solid alloy due to deteriorated permeability which is very likely to be caused by the heavy grain refinement and the formation of more intermetallic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.C. Williams, E.A. Starke Jr: Acta Mater., 2003, vol. 51, pp. 5775-5799.

    Article  Google Scholar 

  2. W.X. Shu, L.G. Hou, J.C. Liu, C. Zhang, F. Zhang, J.T. Liu, L. Z. Zhuang, J.S. Zhang: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5375-5392.

    Article  Google Scholar 

  3. I. I. Novikov: Hot Shortness of Non-Ferrous Metals and Alloys, Nauka, Moscow, 1966,.

    Google Scholar 

  4. G. K. Sigworth: AFS Trans., 1996, vol. 104, pp. 1053-1062.

    Google Scholar 

  5. D. G. Eskin, S. Suyitno, L. Katgerman: Prog. Mater. Sci., 2004, vol. 49, pp. 629-711.

    Article  Google Scholar 

  6. W.M. van Haaften, W.H. Kool, and L. Katgerman: J. Mater. Eng. Per., 2002, vol. 11(5), pp. 537-543.

    Article  Google Scholar 

  7. W. I. Pumphrey, J. V. Lyons: J. Inst. Met., 1948, vol. 74(9), pp. 439-447.

    Google Scholar 

  8. D. Viano, D. StJohn, J. Grandfield, C. Cáceres: in Light Metals 2005 (Edited by Halvor Kvande TMS), 2005, pp. 1069–73.

  9. S. Suyitno, D.G. Eskin, V.I. Savran, L. Katgerman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3551-3561.

    Article  Google Scholar 

  10. J.A. Spittle, A.A. Cushway: Met. Technol., 1983, vol. 10, pp. 6-13.

    Article  Google Scholar 

  11. P. H. Jennings, A. R. E. Singer, W. I. Pumphrey: J. Inst. Met.,1948, vol. 74(7), pp. 227-246.

    Google Scholar 

  12. M.A. Easton, H. Wang, J. Grandfield, C.J. Davidson, D.H. StJohn, L.D. Sweet and M.J. Couper: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3227-3238.

    Article  Google Scholar 

  13. L. Sweet, J.A. Taylor, M.J. Couper, M.A. Easton: Mater. Sci. Forum, 2011, vol. 693, pp. 217-223.

    Article  Google Scholar 

  14. L. Sweet, J.A. Taylor, M.A. Easton, M.J. Couper, N. Parson: in Light Metals 2012 (Edited by: Carlos E. Suarez TMS), 2012, pp. 1133–38.

  15. D. Warrington and D. G. McCartney: Cast Metals, 1991, vol. 3(4), pp. 202-208.

    Google Scholar 

  16. B. Chamberlain, S. Watanabe: AFS Trans., 1977, vol. 85, pp. 133-142.

    Google Scholar 

  17. G. K. Sigworth, O. Rios, J. Howell, M. Kaufman: AFS Trans., 2004, vol. 112, pp. 387-408.

    Google Scholar 

  18. D. B. Karunakar, R. N. Rai, S. Patra, G. L. Datta: Int. J. Adv. Manuf. Technol., 2009, vol. 45, pp. 851-858.

    Article  Google Scholar 

  19. V. Davies: Brit. Foundryman, 1970, vol. 43, pp. 93-101.

    Google Scholar 

  20. M. Easton, H. Wang, J. Grandfield, D. StJohn, E. Sweet: Mater. Forum, 2004, vol. 28, pp. 224-229.

    Google Scholar 

  21. R. Nadella, D. G. Eskin, and L. Katgerman: in Light Metals 2007 (Edited by Morten Sǿ rlie TMS), 2007, pp. 727–32.

  22. S. Lin, C. Aliravci, and M. O. Pekguleryuz: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1056-1068.

    Article  Google Scholar 

  23. S. Li, K. Sadayappan and D. Apelian: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 614-623.

    Article  Google Scholar 

  24. H. K. Kamga, D. Larouche, M. Bournane, A. Rahem: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7413-7423.

    Article  Google Scholar 

  25. Q. Du, Y. Li: Acta Mater., 2014, vol. 71, pp. 380-389.

    Article  Google Scholar 

  26. X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, Q. Du: Acta Mater., 2015, vol. 99, pp. 337-346.

    Article  Google Scholar 

  27. D.G. Eskin, S. Suyitno, J.F. Mooney, L. Katgerman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1325-1335.

    Article  Google Scholar 

  28. H. Nagaumi, G.X. Xue, Z.Z. Zhang Y.L. Ma: Mater. Sci. Forum, 2014, vol. 783-786, pp. 300-306.

    Article  Google Scholar 

  29. M. Lalpoor, D.G. Eskin, L. Katgerman: Mater. Sci. Eng. A, 2008, vol. 497, pp. 186-194.

    Article  Google Scholar 

  30. J.B. Hess: Metall. Trans. A, 1983, vol. 14A, pp. 323-327.

    Article  Google Scholar 

  31. F. D’Elia, C. Ravindran: AFS Trans., 2009, vol. 117, pp. 139-148.

    Google Scholar 

  32. J.B. Mitchell, S.L. Cockcroft, D. Viano, C. Davidson and D. StJohn: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2503-2512.

    Article  Google Scholar 

  33. W.S. Pellini: Foundry, 1952, vol. 80, pp. 125-133.

    Google Scholar 

  34. M.R. Nasr Esfahani, B. Niroumand: Mater. Charact., 2010, vol. 61, pp. 318-324.

    Article  Google Scholar 

  35. S. Suyitno, W. H. Kool, L. Katgerman: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2388-2400.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by The Fundamental Research Funds for the Central Universities (No. FRF-BR-15-078A), Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120006110019), and the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials (Nos. 2012Z-13, 2014ZD-02, 2015-ZD08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. X. Li or L. Z. Zhuang.

Additional information

Manuscript submitted February 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Q.L., Li, Y., Li, H.X. et al. Roles of Alloy Composition and Grain Refinement on Hot Tearing Susceptibility of 7××× Aluminum Alloys. Metall Mater Trans A 47, 4080–4091 (2016). https://doi.org/10.1007/s11661-016-3588-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3588-2

Keywords

Navigation