Skip to main content
Log in

Hot-Tear Susceptibility of Aluminum Wrought Alloys and the Effect of Grain Refining

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Hot-tear resistance of aluminum wrought alloys AA1050, AA3104, and AA5182 has been determined via constrained-rod casting and two quantitative indices. Hot-tear susceptibility ranking was observed to be AA1050 < AA5182 < AA3104. Mechanisms of hot tearing were studied via microstructural investigation of hot tears. Hot tearing in AA1050 and AA5182 alloys could be characterized as interdendritic separation during solidification. Microstructural investigation of tear surfaces of AA1050 alloy showed that free-dendritic surfaces were substantially covered with solute-rich phases indicating good interdendritic feeding. The AA1050 alloy showed low susceptibility to hot tearing, and grain refining had an additional effect in reducing hot-tear susceptibility. The AA5182 alloy showed moderate susceptibility to hot tearing; tear surfaces were only partially covered with a eutectic phase, and grain refinement was very effective in eliminating hot tears in this alloy, which exhibits a large nonequilibrium freezing range. The mechanism of hot tearing in AA3104 was ductile fracture of interlocked dendrite tips in central zones deprived of interdendritic liquid film during solidification. Hot-tear mechanisms observed could seemingly be explained by Saveiko’s liquid film theory. Nonequilibrium freezing range did not explain the hot-tear susceptibility ranking of the alloys. Hot-tear sensitivity (HTS) was related to the average grain size, d (μm), of the castings as HTS ≅ 6 × 10−5 d 2 to 0.014d + 3, where HTS was sensitive to grain refining when the grain size was above 200 μm. Grain refining was most effective in reducing the hot-tear susceptibility in alloy AA5182, which has the largest nonequilibrium freezing range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11
Fig 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. PYRADIA is a trademark of Pyradia Inc., Longueuil (Quebec) Canada J4G 1P8

References

  1. D.J. Monaghan, M.B. Henderson, J.D. Hunt, D.V. Edmonds: Mater. Sci. Eng. A, 1993, vol. 173 (1–2), pp. 251–54

    Google Scholar 

  2. A.B. Phillion, S.L. Cockcroft: Light Metals, TMS, Warrendale, PA, 2004, pp. 673–78

    Google Scholar 

  3. D.G. Eskin, Suyitno, and L. Katgerman: Prog. Mater. Sci., 2004, vol. 49 (5), pp. 629–711

  4. J. Sengupta, S.L. Cockcroft, D.M. Maijer, A. Larouche: Mater. Sci. Eng. A, 2005, vol. 397 (1–2), pp. 157–77

    Google Scholar 

  5. M. M’Hamdi, A. Mo: Mater. Sci. Eng. A, 2005, vols. 413–414, pp. 105–08

    Google Scholar 

  6. D. Fabreque, A. DesChamps, M. Suery, W.J. Poole: Mater. Trans. A, 2006, vol. 37A (5), pp. 1459–67

    Article  Google Scholar 

  7. D. Warrington, D.G. McCartney: Cast Met., 1991, vol. 3 (3), pp. 202–08

    Google Scholar 

  8. S.A. Metz, M.C. Flemings: AFS Trans., 1970, vol. 78, pp. 453–60

    Google Scholar 

  9. A.A. Gokhale: Trans. Ind. Inst. Met., 1986, vol. 39 (2), pp. 153–63

    Google Scholar 

  10. S. Lin: Master’s Thesis, University of Quebec in Chicoutimi, Chicoutimi, PQ, Canada,1999, pp. 9–68

  11. X. Li: Master’s Thesis, University of Quebec in Chicoutimi, Chicoutimi, PQ, Canada, 2000, pp. 4–23

  12. J. Vero: Met. Ind., 1936, vol. 48, pp. 431–94

    CAS  Google Scholar 

  13. W.I. Pumphrey, P.H. Jennings: J. Inst. Met., 1948, vol. 75, pp. 235–56

    CAS  Google Scholar 

  14. H.F. Bishop, C.G. Ackerlind, W.S. Pellini: AFS Trans., 1952, vol. 60, pp. 818–33

    Google Scholar 

  15. J.C. Borland: Br. Weld. J., 1960, vol. 7 (8), pp. 508–12

    Google Scholar 

  16. V.N. Saveiko: Russ. Casting Prod., 1961, vol. 11, Oct. pp. 453–56

  17. C.S. Smith: Trans. AIME, 1949, vol. 185, pp. 762–69

    Google Scholar 

  18. I. Durrans: Thesis–Part II, Oxford University, Oxford, United Kingdom, 1981

  19. D. Warrington, D. McCartney: Cast Met., 1989, vol. 2, pp. 134–43

    Google Scholar 

  20. J.A. Spittle, A.A. Cushway: Met. Technol., 1983, vol. 10, pp. 6–13

    CAS  Google Scholar 

  21. Suyitno, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1537–46

  22. J. Zhao, G. Chen: J. Dalian Inst. Technol., 1985, vol. 24 (4), pp. 31–36

    CAS  Google Scholar 

  23. R.A. Dodd, W.A. Pollard, J.W. Meier: AFS Trans., 1957, vol. 65, pp. 100–17

    Google Scholar 

  24. E.F. Chirkov: Mater. Forum, 2004, vol. 28, pp. 692–99

    CAS  Google Scholar 

  25. T.W. Clyne, G.J. Davies: Br. Foundryman, 1975, vol. 68 (9), pp. 238–44

    Google Scholar 

  26. I. Medovar: Avtomatich. Svarka, 1954, vol. 7, pp. 12–28

    CAS  Google Scholar 

  27. F. Matsuda, K. Nakata, and Y. Shimokusu: J. Jpn. Weld. Res. Inst., 1983, vol. 12 (1), pp. 93–102

    Google Scholar 

  28. N.N. Prokhorov: Russ. Casting Prod., 1962, vol. 2, pp. 172–75

    Google Scholar 

  29. I. Novikov: Goryacelomkost Tsvetnykh Metallov I Spavov (Hot-Shortness of Non-Ferrous Metals and Alloys), Nauka, Moscow, Russia, 1966 (in Russian)

  30. B. Magnin, L. Katgerman, and B. Hannart: Modeling of Casting Welding and Advanced Solidification Processes VII, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, pp. 303–10

  31. U. Feurer: Quality Control of Engineering Alloys and the Role of Materials Science, Delft University of Technology, Delft, The Netherlands, 1978, pp. 131–45

    Google Scholar 

  32. T.W. Clyne, G.J. Davies: Proc. Conf. Solidification and Casting of Metals, The Metals Society, London, 1979, pp. 275–78

    Google Scholar 

  33. J. Campbell: Castings, Butterworth-Heineman Ltd., Oxford, United Kingdom, 1991, pp. 209–32

    Google Scholar 

  34. L. Katgerman: J. Met., 1982, vol. 34 (2), pp. 46–49

    Google Scholar 

  35. L. Katgerman: Light Metals, AIME, Warrendale, PA, USA, 1981, pp. 845–52

  36. M. Rappaz, J.M. Drezet, M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55

    Article  CAS  Google Scholar 

  37. M. Braccini, C.L. Martin, and M. Suery: in Modeling of Casting Welding and Advanced Solidification Processes IX, P.R. Sahm, P.N. Hansen and J.G. Conley, eds., Shaker-Verlag, Aachen, Germany, 2000, pp. 18–24

  38. P. Sun, H. Yang: Cast. Technol. (China), 1987, vol. 4, pp. 23–27

    Google Scholar 

  39. S, Lin, C. Aliravci, M.O. Pekguleryuz, and A.B. Innus: Light Metals, CIM, Montreal, Canada, 1997, pp. 451–46

  40. P. Liu and G.L. Dunlop: Aluminum Alloys: Physical and Mechanical Properties–Vol. I, E.A. Starke, Jr. and T.H. Sanders, Jr., eds., EMAS, Warrington, United Kingdom, 1987, pp. 3–16

  41. C. Aliravci and M.O. Pekguleryuz: Light Metals, B. Welch, ed., TMS, Warrendale, PA, 1998, pp. 1087–96

  42. L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys—Volume I: Wrought Alloys, Skanaluminum, Oslo, 1986, pp. 75–81

  43. C.E. Cross and D.L. Olson: Aluminum Alloys—Their Physical and Mechanical Properties, Trans Tech Publications, Aedermannsdorf, Switzerland, 1986, vol. 3, pp. 1869–75

  44. T.U. Honma, M Othaki: Aluminum, 1984, vol. 60, pp. 929–32

    Google Scholar 

  45. B.C. Pai, G. Ramani, R.M. Pillai, K.G. Satyanarayana: J. Mater. Sci., 1995, vol. 30, pp. 1903–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Alcan International, Ltd., Natural Sciences and Engineering Research Council of Canada (NSERC), and the Foundation of the University of Quebec in Chicoutimi (FUQAC) for supporting the experimental work. Thanks are due to Gilles Lemire for assisting the hot-tearing experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.O. Pekguleryuz.

Additional information

Manuscript submitted October 27, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S., Aliravci, C. & Pekguleryuz, M. Hot-Tear Susceptibility of Aluminum Wrought Alloys and the Effect of Grain Refining. Metall Mater Trans A 38, 1056–1068 (2007). https://doi.org/10.1007/s11661-007-9132-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9132-7

Keywords

Navigation