Skip to main content
Log in

Mechanisms for Solidification Crack Initiation and Growth in Aluminum Welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present work, mechanisms are proposed for solidification crack initiation and growth in aluminum alloy 6060 arc welds. Calculations for an interdendritic liquid pressure drop, made using the Rappaz–Drezet–Gremaud (RDG) model, demonstrate that cavitation as a liquid fracture mechanism is not likely to occur except at elevated levels of hydrogen content. Instead, a porosity-based crack initiation model has been developed based upon pore stability criteria, assuming that gas pores expand from pre-existing nuclei. Crack initiation is taken to occur when stable pores form within the coherent dendrite region, depending upon hydrogen content. Following initiation, crack growth is modeled using a mass balance approach, controlled by local strain rate conditions. The critical grain boundary liquid deformation rate needed for solidification crack growth has been determined for a weld made with a 16 pct 4043 filler addition, based upon the local strain rate measurement and a simplified strain rate partitioning model. Combined models show that hydrogen and strain rate control crack initiation and growth, respectively. A hypothetical hydrogen strain rate map is presented, defining conceptually the combined conditions needed for cracking and porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.C. Lippold: Hot Cracking Phenomena in Welds, Springer-Verlag, Berlin Heidelberg, Germany, 2005, pp. 271–90.

    Book  Google Scholar 

  2. J.C.M. Farrar: Hot Cracking Phenomena in Welds, Springer, New York, NY, 2005, pp. 291–04.

    Book  Google Scholar 

  3. H. Heuser: Hot Cracking Phenomena in Welds, Springer, New York, NY, 2005, pp. 305–27.

    Book  Google Scholar 

  4. J. Campbell: Castings, Butterworth-Heinemann, Oxford, Great Britain, 1991.

  5. R.A. Chihoski: Weld. J., 1972, vol. 51 (1), pp. 9s–18s.

    Google Scholar 

  6. T. Zacharia: Weld. J., 1994, vol. 73 (7), pp. 164s–172s.

    Google Scholar 

  7. Z. Feng: Weld. World, 1994, vol. 33, pp. 340–47.

    CAS  Google Scholar 

  8. D.G. Eskin, W.H. Suyitno, and L. Katgerman: Progr. Mater. Sci., 2004, vol. 49, pp. 629–711.

    Article  CAS  Google Scholar 

  9. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1511–19.

    Article  CAS  ADS  Google Scholar 

  10. Suyitno, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1537–46.

  11. C.E Cross: Hot Cracking Phenomena in Welds, Springer, New York, NY, 2005, pp. 3–18.

    Book  Google Scholar 

  12. C.E. Cross and N. Coniglio: Hot Cracking Phenomena in Welds II, Springer, New York, NY, 2008, pp. 39–58.

    Google Scholar 

  13. M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.

    Article  CAS  ADS  Google Scholar 

  14. V.N. Saveiko: Russ. Cast. Prod., 1961, (11), pp. 453–56.

  15. C.H. Dickhaus, L. Ohm, and S. Engler: AFS Trans., 1994, vol. 101, pp. 677–84.

    Google Scholar 

  16. D.J. Lahaie and M. Bouchard: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 697–705.

    Article  CAS  ADS  Google Scholar 

  17. W.S. Pellini: Foundry, 1952, vol. 80, pp. 125–99.

    Google Scholar 

  18. N.N. Prokhorov: Svar. Proiz., 1956, vol. 6, pp. 5–11.

    Google Scholar 

  19. T. Senda, F. Matsuda, G. Takano, K. Watanabe, T. Kobayashi, and T. Matsuzaka: Trans. JWS, 1971, vol. 2 (2), pp. 141–62.

    Google Scholar 

  20. W.I. Pumphrey and P.H. Jennings: J. Inst. Met., 1948, vol. 75, pp. 235–56.

    CAS  Google Scholar 

  21. J.C. Borland: Brit. Weld. J., 1961, vol. 8, pp. 526–40.

    CAS  Google Scholar 

  22. U. Feurer: Proc. Int. Symp. Eng. Alloys, Delft University of Technology, Delft, The Netherlands, 1977, pp. 131–45.

  23. J.C. Fisher: J. Appl. Phys., 1948, vol. 19, pp. 1062–67.

    Article  ADS  Google Scholar 

  24. H. Murakawa, H. Serizawa, and M. Shibahara: Mathematical Modelling of Weld Phenomena 7, TU Graz, Graz, Austria, 2005, pp. 539–54.

  25. J.A. Williams and A.R.E. Singer: J. Inst. Met., 1968, vol. 96, pp. 5–12.

    CAS  Google Scholar 

  26. J.F. Grandfield, C.J. Davidson, and J.A. Taylor: Light Metals 2001, TMS, Warrendale, PA, 2001, pp. 895–901.

    Google Scholar 

  27. M. Braccini, C.L. Martin, M. Suéry, and Y. Bréchet: Modeling of Casting, Welding, and Advanced Solidification Processes IX, Shaker Verlag, Aachen, Germany, 2000, pp. 19–24.

  28. M. Braccini, C.L. Martin, M. Suéry, and Y. Bréchet: Mater. Techniq., 2000, vols. 5–6, pp. 19–24.

    Google Scholar 

  29. C.V. Robino, M. Reece, G.A. Knorovsky, J.N. DuPont, and Z. Feng: Proc. 7th Int. Conf. Trends in Welding Research, ASM INTERNATIONAL, Materials Park, OH, 2005, pp. 313–18.

  30. N. Coniglio, C.E. Cross, T. Michael, and M. Lammers: Weld. J., 2008, vol. 87 (8), pp. 237s–247s.

    Google Scholar 

  31. N. Coniglio: Doctoral Thesis, Otto-von-Guericke University, Magdeburg, Germany, BAM, Berlin, Germany, 2008.

  32. L. Bäckerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Skanaluminum, Oslo, Norway, vol. 1, 1986, pp. 63–74.

  33. B.T. Alexandrov and J.C. Lippold: IIW Doc. IX-2163-05, International Institute of Welding, Paris, France, 2005.

  34. N. Coniglio and C.E. Cross: Weld. World, 2006, vol. 50 (11–12), Doc. IIW-1755-06, pp. 14–23.

  35. N. Coniglio, C.E. Cross, I. Dörfel, and W. Österle: Mater. Sci. Eng., A, 2009, vol. 517, pp. 321–27.

    Article  CAS  Google Scholar 

  36. L.F. Mondolfo: Aluminum Alloys—Structure & Properties, Butterworth and Co., London, 1976, p. 63.

    Google Scholar 

  37. Aluminum, Vol. 1: Properties, Physical Metallurgy, and Phase Diagrams, K.R. Van Horn, ed., ASM, Metals Park, OH, 1967.

  38. S. Ganesan, C.L. Chan, and D.R. Poirier: Mater. Sci. Eng., A, 1992, vol. A151, pp. 97–105.

    CAS  Google Scholar 

  39. D.E.J. Talbot: The Effects of Hydrogen in Aluminum and Its Alloys, Maney Publishing, London, 2004.

  40. M. Rappaz, A. Jacot, and W.J. Boettinger: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 467–79.

    Article  CAS  Google Scholar 

  41. D. Warrington and D.G. McCartney: Cast Met., 1989, vol. 2 (3), pp. 134–43.

    Google Scholar 

  42. M.G. Mousavi, C.E. Cross, and Ø. Grong: Sci. Technol. Weld. Joining, 1999, vol. 4 (6), pp. 381–88.

    Article  CAS  Google Scholar 

  43. M.J. Dvornak, R.H. Frost, and D.L. Olson: Weld. J., 1989, vol. 68 (8), pp. 327s–337s.

    Google Scholar 

  44. L.A. Tarshis, J.L. Walker, and J.W. Rutter: Metall. Trans., 1971, vol. 2, pp. 2589–97.

    Article  CAS  Google Scholar 

  45. J. Campbell: The Solidification of Metals, Iron and Steel Institute, London, 1968, pp. 18–26.

    Google Scholar 

  46. R.A. Woods: Weld. J., 1974, vol. 53 (3), pp. 97s–108s.

    Google Scholar 

  47. R.P. Martukanitz and P.R. Michnuk: Trends in Welding Research, ASM, Metals Park, OH, 1982, pp. 315–30.

    Google Scholar 

  48. G. Huismann, F. Wittemann, T. Behrendt, and H. Krüger: IIW Doc. Commission IX, International Institute of Welding, Paris, France, 2004.

  49. D.E.J. Talbot and D.A. Granger: J. Inst. Met., 1963–1964, vol. 92, pp. 290–97.

  50. H. Toda, T. Hidaka, K. Minami, M. Kobayashi, K. Uesugi, Y. Suzuki, and T. Kobayashi: Proc. 11th Int. Conf. on Aluminum Alloys, Wiley-VCH, Weinheim, Germany, 2008, pp. 575–581.

  51. J. Campbell: Brit. J. Appl. Phys., 1968, vol. 1 (2), pp. 1085–88.

    Google Scholar 

  52. S.N. Tiwari and J. Beech: Met. Sci., 1978, pp. 356–62.

  53. N. Coniglio and C.E. Cross: Hot Cracking Phenomena in Welds II, Springer, New York, NY, 2008, pp. 277–310.

    Book  Google Scholar 

  54. H. Tamura, N. Kato, S. Ochiai, and Y. Katagiri: Trans. JWS, 1997, vol. 8 (2), pp. 16–22.

    Google Scholar 

  55. Y. Arata, F. Matsuda, K. Nakata, and K. Shinozaki: Trans. JWRI, 1977, vol. 6, pp. 91–104.

    Article  CAS  Google Scholar 

  56. F. Matsuda, H. Nakagawa, K. Nakata, and H. Okada: Trans. JWRI, 1979, vol. 8, pp. 85–95.

    CAS  Google Scholar 

  57. C.E. Cross and D.L. Olson: Proc. Int. Conf. on Aluminum Alloys: Physical and Mechanical Properties, University of Virginia, Charlottesville, Virginia, 1986, vol. III, pp. 1869–75.

  58. C.E. Cross, D.L. Olson, and G.R. Edwards: Int. Conf. Proc. on Modeling and Control of Joining Processes, American Welding Society, Miami, FL, 1993, pp. 549–57.

  59. R. Otsuka: Handbook of Aluminum, Vol. 1: Physical Metallurgy and Processes, Marcel Dekker, New York, NY, 2003, p. 661.

    Google Scholar 

  60. B. Dixon: IIW Asian Pacific Regional Welding Congress, Hobart, TAS, Australia, 1988, pp. 731–51.

Download references

Acknowledgment

The authors are grateful to BAM for providing internal funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.E. Cross.

Additional information

Manuscript submitted November 14, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coniglio, N., Cross, C. Mechanisms for Solidification Crack Initiation and Growth in Aluminum Welding. Metall Mater Trans A 40, 2718–2728 (2009). https://doi.org/10.1007/s11661-009-9964-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9964-4

Keywords

Navigation