Skip to main content
Log in

Microstructural Evolution and Solidification Behavior of Al-Mg-Si Alloy in High-Pressure Die Casting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural evolution and solidification behavior of Al-5 wt pct Mg-1.5 wt pct Si-0.6 wt pct Mn-0.2 wt pct Ti alloy have been investigated using high-pressure die casting. Solidification commences with the formation of primary α-Al phase in the shot sleeve and is completed in the die cavity. The average size of dendrites and fragmented dendrites of the primary α-Al phase formed in the shot sleeve is 43 μm, and the globular primary α-Al grains formed inside the die cavity is at a size of 7.5 μm. Solidification inside the die cavity also forms the lamellar Al-Mg2Si eutectic phase and the Fe-rich intermetallics. The size of the eutectic cells is about 10 μm, in which the lamellar α-Al phase is 0.41 μm thick. The Fe-rich intermetallic compound exhibits a compact morphology and is less than 2 μm with a composition of 1.62 at. pct Si, 3.94 at. pct Fe, and 2.31 at. pct Mn. A solute-enriched circular band is always observed parallel to the surface of the casting. The band zone separates the outer skin region from the central region of the casting. The solute concentration is consistent in the skin region and shows a general drop toward the center inside the band for Mg and Si. The peak of the solute enrichment in the band zone is much higher than the nominal composition of the alloy. The die casting exhibits a combination of brittle and ductile fracture. There is no significant difference on the fracture morphology in the three regions. The band zone is not significantly detrimental in terms of the fracture mechanism in the die casting. Calculations using the Mullins and Sekerka stability criterion reveal that the solidification of the primary α-Al phase inside the die cavity has been completed before the spherical α-Al globules begin to lose their stability, but the α-Al grains formed in the shot sleeve exceed the limit of spherical growth and therefore exhibit a dendritic morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.J. Vinarcik: High Integrity Die Casting Processes, Wiley, New York, 2003.

    Book  Google Scholar 

  2. H.L. MacLean, L.B. Lave: Prog. Energy Combust. Sci., 2003, vol. 29 (1), pp1-69.

    Article  CAS  Google Scholar 

  3. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. DeSmet, A. Haszler, A. Vieregge: Mater. Sci. Eng. A, 2000, vol. A280 (1), pp.37-49.

    CAS  Google Scholar 

  4. R.J. Orsato, P. Wells: J. Cleaner Prod., 2007, vol. 15(11-12), pp.994-1006.

    Article  Google Scholar 

  5. J.T. Staley, D.J. Lege: J. De Physique IV, 1993, vol.3, pp.179-90.

    Article  CAS  Google Scholar 

  6. A. Tharumarajah: Resour. Conserv. Recycl., 2008, vol.52, pp.1185-89.

    Article  Google Scholar 

  7. D. Carle, G. Blount: Mater. Des., 1999, vol. 20 (5), pp. 267-72.

    Article  CAS  Google Scholar 

  8. European Aluminium Association: Aluminium in Cars, European Aluminium Association, 2008.

  9. S. Ji, D. Watson, Z. Fan, M. White, Mater. Sci. Eng. A, 2012, vol. 556, pp 824–33.

    Article  CAS  Google Scholar 

  10. D. Apelian: Aluminium Cast Alloys: Enabling Tools for Improved Performance. North American Die Casting Association, Wheeling, IL, USA, 2009, pp.1-68.

    Google Scholar 

  11. P. Krug, H. Koch, and R. Klos: Magsimal-25—A new High-Ductility Die Casting Alloy for Structural Parts in Automotive Industry, www.dgm.de/download/tg/523/523_0784.pdf.

  12. M. Hosseinifar, D.V. Malakhov: Metall. Mater. Trans. A, 2011, vol.42A, pp.825-33.

    Article  Google Scholar 

  13. Y.L. Liu, S.B. Kang: J. Mater. Sci., 1997, vol.32, pp.1443-47.

    Article  CAS  Google Scholar 

  14. S.A. Kori, M.S. Prabhudev, T.M. Chandrashekharaiah: Trans. Indian Inst. Met., 2009, vol.62, pp.353-56.

    Article  CAS  Google Scholar 

  15. L. Yu, X. Liu, Z. Wang, X. Bian: J. Mater. Sci. 2005, vol.40, pp.3865-71.

    Article  CAS  Google Scholar 

  16. S. Otarawanna, C.M. Gourlay, H.I. Laukli, A.K. Dahle: Metall. Mater. Trans. A, 2009, vol. 40A, pp.1645-59.

    Article  CAS  Google Scholar 

  17. J. Jie, C. Zou, H. Wang, Z. Wei: Materials Letters, 2010, vol. 64, pp.869-71.

    Article  CAS  Google Scholar 

  18. R. Kimura, H. Hatayama, K. Shinozaki, I. Murashima, J. Asada, M. Yoshida: J. Mater. Process. Technol., 2009, vol. 209 (1), pp.210-15.

    Article  CAS  Google Scholar 

  19. A. Hamasaiid, M.S. Dargusch, C.J. Davidson, S. Tovar, T. Loulou, F. Rezai-Aria, G. Dour: Metall. Mater. Trans. A, 2007, vol. 38A, pp.1303-15.

    Article  CAS  Google Scholar 

  20. A.K. Dahle, D.H. StJohn: Acta Mater. 1999, vol. 47, pp. 31-41.

    Article  CAS  Google Scholar 

  21. V. Raghavan: J. Phase Equilib. Diffus., 2007, vol. 28, pp.189-91.

    Article  CAS  Google Scholar 

  22. P. Beeley, Foundry Technology, 2nd ed., Oxford: Butterworth-Heinemann; 2001.

    Google Scholar 

  23. W.W. Mullins, R.F. Sekerka: J. Appl. Phys., 1963, vol.34, pp.323-29.

    Article  CAS  Google Scholar 

  24. W.W. Mullins, R.F. Sekerka: J. Appl. Phys., 1964, vol.35, pp.444-51.

    Article  Google Scholar 

  25. R.F. Sekerka: J. Appl. Phys., 1965, vol.36, pp.264-68.

    Article  Google Scholar 

  26. D.P. Woodruff: The Solid–Liquid Interface. Cambridge: Cambridge University Press; 1973.

    Google Scholar 

  27. E.A. Brandes, G.B. Brook: Smithells Metals Reference Book. 7th ed. Oxford: Butterworth; 1992.

    Google Scholar 

  28. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow: Acta Mater., 2000, vol. 48, pp.2823-35.

    Article  CAS  Google Scholar 

  29. M.H. Burden, J.D. Hunt: J. Cryst. Growth, 1974, vol. 22, pp.99-108.

    Article  CAS  Google Scholar 

  30. J.D. Hunt, S.Z. Lu: Metall. Mater. Trans. A, 1996, vol. 27A, pp.611-23.

    Article  CAS  Google Scholar 

  31. K. Keslioglu, M. Gunduz, H. Kaya, E. Cadırl: Mater. Lett., 2004, vol.58, pp.3067-71.

    Article  CAS  Google Scholar 

  32. T.F. Bower, H.D. Brody, M.C. Flemings: Trans. AIME., 1966, vol.236, pp.624-33.

    CAS  Google Scholar 

  33. S-P. Li, S-X. Zhao, M-X. Pan, D-Q. Zhao, X-C. Chen, O.M. Barabash: J. Mater. Sci., 2001, vol.36, pp.1569-75.

    Article  CAS  Google Scholar 

  34. J. Cambell (2003) Castings, 2nd ed., Elsevier Butterworth-Heinemann, Oxford.

    Google Scholar 

  35. K.A. Jackson, J.D. Hunt: Trans. Metall. Soc. AIME., 1966, vol.236, pp.1129-42.

    CAS  Google Scholar 

  36. R. Grugel, W. Kurz: Metall. Trans. A, 1987, vol.18, pp.1137-42.

    Article  Google Scholar 

  37. U. Böyüka, S. Enginb, N. Maraşlı: Materials Characterization, 2011, vol.62 (9), pp.844-51.

    Article  Google Scholar 

  38. H. Kaya, E. Cadirli, M. Gündüz: J. Mater. Process. Technol., 2007, vol.183 (2-3), pp.310-20.

    Article  CAS  Google Scholar 

  39. E.P. Whelan, C.W. Haworth: J. Aust. Inst. Met., 1967, vol.12, pp.77-126.

    CAS  Google Scholar 

  40. R. Trivedi, J.T. Mason, J.D. Verhoeven, W. Kurz: Metall. Trans. A, 1991, vol.22A, pp.2523-33.

    CAS  Google Scholar 

  41. A. Moore and R. Elliott: in Proc. Conf. Iron and Steel, Ins. Publ., Brighton, 1967, pp. 167–74.

  42. E. Cadirli, H. Kaya, M. Gunduz: Mater. Res. Bull., 2003, vol. 38, pp.1457-76.

    Article  CAS  Google Scholar 

  43. E. Cadirli, A. Ulgen, M. Gunduz: Mater. Trans. JIM., 1999, vol. 40, pp.989-96.

    CAS  Google Scholar 

  44. R. Trivedi, P Magnin, W Kurz: Acta Metall. 1987, vol. 35, pp.971-80.

    Article  CAS  Google Scholar 

  45. W. Kurz and R. Trivedi: Metall. Trans. A, 1991, vol.22A, 3051–57.

    CAS  Google Scholar 

  46. L. Wang, M. Makhlouf, D. Apelian: Int. Mater. Rev., 1995, vol. 40, pp. 221-38.

    Article  CAS  Google Scholar 

  47. L.F. Mondolfo: Aluminium Alloys: Structure and Properties, London, Butterworths, 1976.

    Google Scholar 

  48. S.G. Shabestari: Mater. Sci. Eng. A, 2004, vol.383A, pp.289-300.

    Google Scholar 

  49. G. Gustafsson, T. Thorvaldsson, G.L. Dunlop: Metall. Trans. A, 1986, vol. 17A, pp.45-52.

    CAS  Google Scholar 

  50. S.G. Shabestari, M. Mahmudi, M. Emami, J. Campbell: Int. J. Cast Met. Res.., 2002, vol. 15, pp.17-24.

    CAS  Google Scholar 

  51. J.L. Jorstad: Die Casting Eng., 1986, vol. 11/12, pp.23-27.

    Google Scholar 

  52. L.F. Mondolfo: Manganese in Aluminium Alloys, The Manganese Centre, Paris, 1978.

    Google Scholar 

  53. A. Couture: A.F.S. Int. Cast Met. J., 1981, vol.6(4), pp.9-17.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank EPSRC and JLR for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxun Ji.

Additional information

Manuscript submitted April 25, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, S., Wang, Y., Watson, D. et al. Microstructural Evolution and Solidification Behavior of Al-Mg-Si Alloy in High-Pressure Die Casting. Metall Mater Trans A 44, 3185–3197 (2013). https://doi.org/10.1007/s11661-013-1663-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1663-5

Keywords

Navigation