Skip to main content
Log in

Marker-free transgenic corn plant production through co-bombardment

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The use of particle gun for the production of marker-free plants is scant in published literature. Perhaps this is a reflection of the widely held notion that the events generated through bombardment tend to have multiple copies of transgenes, usually integrated at a single locus, features which precludes segregating away the selectable marker gene. However, our previous studies have shown that single-copy integrants are obtained at a high frequency if limited quantity of DNA is used for bombardment. Also, the concatemerized insertion of transgenes has been demonstrated to be greatly reduced if “cassette DNA” is employed in place of whole plasmid DNA for bombardment. Based on the above findings, in the present study the feasibility of co-bombardment was evaluated for the production of marker-free plants in corn, employing a combination of limited quantity DNA and cassette DNA approaches for bombardment. Transgenic events were generated after co-bombardment of a selectable marker cassette containing the nptII gene (2.5 ng per shot) and a GUS gene cassette (15 ng per shot). Among these events single-copy integrants for nptII gene occurred at an average frequency of 68% within which the co-expression frequency of GUS and nptII genes ranged from 41% to 80%. Marker-free corn plants could be identified from the progeny of 28 out of the 103 R0 co-expressing events screened. The results demonstrate that by using cassette DNA and low quantities of DNA for bombardment, marker-free plants are produced at efficiencies comparable to that of Agrobacterium-based co-transformation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

P-CaMV.35S:

Cauliflower mosaic virus 35S promoter

GUS :

β-glucuronidase

nptII :

Neomycin phosphotransferase II

nos:

Nopaline synthase

Bt :

Bacillus thuringiensis

P-Os.rbcS:

Oryza sativa rubisco small subunit promoter

P-Os.Actin15:

Oryza sativa actin15 promoter

P-Os.GT-1:

Oryza sativa glutelin promoter

GOI:

Gene of interest

LWA:

Leaf whorl assay

DAG:

Days after germination

References

  • Agrawal PK, Ajay K, Twyman RM, Christou P (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breed 16:247–260

    Article  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TH, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • Aragao FJL, Brasileiro ACM (2002) Positive, negative and marker-free strategies for transgenic plant selection. Br J Plant Physiol 14:1–10

    CAS  Google Scholar 

  • Aragao FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150

    Article  CAS  Google Scholar 

  • Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang S, Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17:489–496

    Article  CAS  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  CAS  PubMed  Google Scholar 

  • De Block M, Debrouwer D (1991) Two T-DNA’s co-transformed in to Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263

    Article  CAS  Google Scholar 

  • Depicker A, Herman L, Schell J, Van Montagu M (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium plant cell interaction. Mol Gen Genet 201:477–484

    Article  CAS  Google Scholar 

  • Dong J, Kharb P, Teng W, Hall TC (2001) Characterization of rice transformed via an Agrobacterium-mediated inflorescence approach. Mol Breed 7:187–194

    Article  CAS  Google Scholar 

  • Fu X, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl AE, Blanco A (2008) Transgenic durum wheat line that is free of marker genes and expresses 1Dy10. J Cereal Sci 48:439–445

    Article  CAS  Google Scholar 

  • Gupta M, Nirunsuksiri W, Schulenberg G, Hartl T, Novak S, Bryan J, Vanopdorp N, Bing J, Thompson S (2008) A non-PCR-based Invader® assay quantitatively detects single-copy genes in complex plant genomes. Mol Breed 21:173–181

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Gilbertson LA, Adams TH, Malloy KP, Reisenbigler EK, Birr DH, Snyder MW, Zhang Q, Luethy MH (2004) Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res 13:451–461

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  • Jacob SS, Veluthambi K (2002) Generation of selection marker-free transgenic plants by co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Sci 163:801–806

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report 5:387–405

    Article  CAS  Google Scholar 

  • Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, An G (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761–773

    Article  CAS  PubMed  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for cotransformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  CAS  PubMed  Google Scholar 

  • Lowe BA, Shiva Prakash N, Way M, Mann MT, Spencer TM, Boddupalli RS (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res. doi:10.1007/s11248-009-9265-0

  • McCabe D, Christou P (1993) Direct DNA transfer using electrical discharge particle acceleration (ACCELL™ technology). Plant Cell Tissue Org Cult 33:227–236

    Article  CAS  Google Scholar 

  • McCormac AC, Fowler MR, Chen DF, Elliott MC (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10:143–155

    Article  CAS  PubMed  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  CAS  PubMed  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    Article  CAS  PubMed  Google Scholar 

  • Puchta H (2003) Marker-free transgenic plants. Plant Cell Tissue Org Cult 74:123–134

    Article  CAS  Google Scholar 

  • Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H (2003) Transgene organization in potato after particle bombardment-mediated (co)transformation using plasmids and gene cassettes. Transgenic Res 12:461–473

    Article  CAS  PubMed  Google Scholar 

  • Rooke L, Steele SH, Barcelo P, Shewry PR, Lazzeri PA (2003) Transgene inheritance, segregation and expression in bread wheat. Euphytica 129:301–309

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shiva Prakash N, Prasad V, Chidambram TP, Cherian S, Jayaprakash TL, Dasgupta S, Wang Q, Mann MT, Spencer TM, Boddupalli RS (2008) Effect of promoter driving selectable marker on corn transformation. Transgenic Res 17:695–704

    Article  CAS  PubMed  Google Scholar 

  • Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  • Tang K, Tinjuangjun P, Xu Y, Sun X, Gatehouse JA, Ronald PC, Qi H, Lu X, Christou P, Kohli A (1999) Particle bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 208:552–563

    Article  CAS  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Tobias DJ, Manoharan M, Pritsch C, Dahleen LS (2007) Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv. Conlon). Plant Cell Rep 26:631–639

    Article  CAS  PubMed  Google Scholar 

  • Tu J, Datta K, Oliva N, Zhang G, Xu C, Khush GS, Zhang Q, Datta SK (2003) Site-independently integrated transgenes in the elite restorer rice line Minghui 63 allow removal of a selectable marker from the gene of interest by self-segregation. Plant Biotech J 1:155–165

    Article  CAS  Google Scholar 

  • Vain P, Afolabi AS, Worland B, Snape JB (2003) Transgene behaviour in populations of rice plants transformed using a new dual binary vector system: pGreen/pSoup. Theor Appl Genet 107:210–217

    Article  CAS  PubMed  Google Scholar 

  • Verweire D, Verleyen K, De-Buck S, Claeys M, Angenon G (2007) Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiol 145:1220–1231

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zhao Q, Zhu D, Ao G, Yu J (2006) Particle-bombardment-mediated co-transformation of maize with a lysine rich protein gene (sb401) from potato. Euphytica 150:75–85

    Article  CAS  Google Scholar 

  • Wu L, Nandi S, Chen L, Rodriguez RL, Huang N (2002) Expression and inheritance of nine transgenes in rice. Transgenic Res 11:533–541

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Wang GL (2000) Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor Appl Genet 100:461–470

    Article  CAS  Google Scholar 

  • Yoder JI, Goldsbrough AP (1994) Transformation systems for generating marker-free transgenic plants. Bio/Technol 12:263–267

    Article  CAS  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred DA, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newsl 72:34–37

    Google Scholar 

  • Zhao Y, Qian Q, Wang H-Z, Huang D-N (2007) Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA. In Vitro Cell Dev Biol Plant 43:328–334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many people have contributed to these investigations carried out by the corn transformation and greenhouse teams at the Monsanto Research Centre, Bangalore, India. We are grateful to James D. Massucci, James F. Rice and Rodney A. Kowalewski, Monsanto Company, St. Louis, MO, USA, for performing radio-active Southern hybridization blots. We thank Beiyan Zeng, Monsanto Company, St. Louis, MO, USA, for her help with statistical analysis. The technical assistance rendered by Venkatachalapathy Muniraju and Janardhana Sundupalle is acknowledged. The authors are indebted to Mittur N. Jagadish for his encouragement throughout this study and for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghava S. Boddupalli.

Additional information

Communicated by P. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiva Prakash, N., Bhojaraja, R., Shivbachan, S.K. et al. Marker-free transgenic corn plant production through co-bombardment. Plant Cell Rep 28, 1655–1668 (2009). https://doi.org/10.1007/s00299-009-0765-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0765-4

Keywords

Navigation