Skip to main content
Log in

Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The presence of resistant selectable marker genes and other added DNAs such as the vector backbone sequence in transgenic plant might be an unpredictable hazard to the ecosystem as well as to human health, which have affected the safe assessment of transgenic plants seriously. Using minimal gene expression cassette (containing the promoter, coding region, and terminator) without vector backbone sequence for particle bombardment is the new trend of plant genetic transformation. In the present paper, we co-transformed the selectable marker bar gene cassette and non-selected cecropinB gene cassette into rice (Oryza sativa L.) by particle bombardment, then eliminated the selectable marker bar gene in R1 generation applying the hereditary segregation strategy and attained two safe transgenic plants only harboring cecropinB gene cassettes without any superfluous DNA. This is the fist report indicating that the combination of minimal gene cassettes transformation with the co-transformation and segregation strategy can generate selectable marker-free transgenic plants, which will promote the advancement in plant genetic engineering greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Afolabi, A. S.; Worland, B.; Snape, J. W.; Vain, P. A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor. Appl. Genet. 4:815–826; 2004

    Article  Google Scholar 

  • Altpeter, F.; Baisakh, N.; Beachy, R.; Bock, R.; Capell, T.; Christou, P.; Daniell, H.; Datta, K.; Datta, S.; J. Dix, P.; Fauquet, C.; Huang, N.; Kohli, A.; Mooibroek, H.; Nicholson, L.; N guyen, T. T.; Nugent, G.; Raemakers, K.; Romano, A.; A. Somers, D.; Stoger, E.; Taylor, N.; Visser, R. Particle bombardment and the genetic enhancement of crops: myths and realities. Mol. Breed. 15:305–327; 2005

    Article  Google Scholar 

  • Breitler, J. C.; Labeyrie, A.; Meynard, D.; Legavre, T.; Guiderdoni, E. Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor. Appl. Genet. 104:709–719; 2002

    Article  PubMed  CAS  Google Scholar 

  • Cao, M. X.; Huang, J. Q.; Yao, Q. H.; Liu, S. J.; Wang, C. L.; Wei, Z. M. Site-secific DNA excision in transgenic rice with a cell-permeable cre recombinase. Mol. Biotechnol. 1:55–63; 2006

    Article  Google Scholar 

  • Edwards, K.; Johnston, C.; Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analyses. Nucleic Acids Res. 98:1349; 1991

    Article  Google Scholar 

  • Fu, X. D.; Duc, L. T.; Fontana, S.; Bong, B. B.; Tinjuangjun, P.; Sudhakar, D.; Twyman, R. M.; Christou P.; Kohli, A. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9:11–19; 2000

    Article  PubMed  CAS  Google Scholar 

  • Gleave, A. P.; Mitra, D. S.; Mudge, S. R.; Morris B. A. M. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40:223–235; 1999

    Article  PubMed  CAS  Google Scholar 

  • Holger, P. Removing selectable marker genes: taking shortcut. Trends in Plant Sci. 7:273–274; 2000

    Google Scholar 

  • Holger, P. Towards the ideal GMP: homologous recombination and marker gene excision. J. Plant Physiol. 7:743–754; 2003

    Google Scholar 

  • Hightower, R.; Baden, C.; Penzes, E.; Dunsmuir, P. The expression of cecropin peptide in transgenic tobacco does not confer resistance to Psuedomanas syringae pv tabaci. Plant Cell Reports. 13:295–299; 1994

    Article  CAS  Google Scholar 

  • Huang, D. N.; Zhu, B.; Yang, W.; Xue, R.; Xiao, H.; Tian, W. Z.; Li, L. C.; Dai, S. H. Introduction of cecropinB gene into rice (Oryza sativa L) by particle gun bombardment and analysis of transgenic plants. Sci. China (Ser. C). 39:652–661; 1996

    Google Scholar 

  • Huang, S.; Gilbertson, L. A.; Adams, T. H.; Malloy, K. P.; Reisenbigler, E. K.; Birr, D. H., Snyder, M. W.; Zhang, Q.; Luethy, M. H. Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res. 5:451–461; 2004

    Article  Google Scholar 

  • Jia H.; Pang, Y; Chen, X.; Fang R. Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfecion. Transgenic Res. 3:375–384; 2006

    Article  Google Scholar 

  • Kohli, A.; Griffiths, S.; Palacios, N.; Twyman, R. M.; Vain, P.; Laurie, D. A.; Christou, P. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J. 6:591–601; 1999

    Article  Google Scholar 

  • Komari T, Hiei Y, Satio Y, Murai N, Kumashiro T. Vestors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 1:165–174; 1996

    Article  Google Scholar 

  • Lange, M.; Vincze, E.; Moller, M. G.; Holm, P. B. Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation. Plant Cell Rep. 8:815–820; 2006

    Article  Google Scholar 

  • Loc, N. T.; Tinjuangjun, P.; Gatehouse, A. M. R.; Christou, P.; Gatehouse, J. A. Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol. Breed. 9:231–244; 2002

    Article  CAS  Google Scholar 

  • Lu, Y. J.; Zheng K. L. A simple method for isolation of rice DNA. Chinese J Rice Sci. 1992, 1: 47–48 (article in Chinese)

    Google Scholar 

  • Lutz, K. A.; Bosacchi, M. H.; Maliga, P. Plastid marker-gene excision by transiently expressed CRE recombinase. Plant J. 3:447–456; 2006

    Article  Google Scholar 

  • Matthews, P. R.; Wang, M. B.; Waterhouse, P. M.; Thornton, S.; Fieg, S. J.; Gubler, F.; Jacobsen, J. V. Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol. Breed. 7:195–202; 2001

    Article  CAS  Google Scholar 

  • Miki, B.; McHugh, S. Selectable marker genes in transgenic plants: applications, alternative and biosafety. J. Biotechnol. 107:193–232; 2004

    Article  PubMed  CAS  Google Scholar 

  • Miller, M.; Tagliani, L.; Wang, N.; Berka, B.; Bidney, D.; Zhao, Z. Y. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res. 11:381–396; 2002

    Article  PubMed  CAS  Google Scholar 

  • Park, J.; Lee, Y. K.; Kang, B. K.; Chung, W. I. Co-transformation using a negative selectable gene for the production of selectable marker gene-free transgenic plants. Theor. Appl. Genet. 109:1562–1567; 2004

    Article  PubMed  CAS  Google Scholar 

  • Romano, A.; Raemakers, K.; Bernardi, J.; Visser, R.; Mooibroek, H. Transgene organization in potato after particle bombardment-mediated (co) transformation using plasmids and gene cassettes. Transgenic Res. 12:461–473; 2003

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniantis, T. Molecular cloning: a laboratory Manual. 2nd edn. New York: Cold Spring Harbor Laboratory Press; 1989

    Google Scholar 

  • Sugtia, K.; Kasahara, T.; Matsunage, E.; Ebinuma. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J. 5:461–469; 2000

    Google Scholar 

  • Vidal, J. R.; Kikkert, J. R.; Donzelli, B. D.; Wallace, P. G.; Reisch, B. I. Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep. 8:807–814; 2006

    Article  Google Scholar 

  • Xia, Z. H.; Li, X. B.; Chen, C.Y.; Fan, H. K.; Jiang, G. H.; Zhu, L. H.; Zhai, W. X. Generation of selectable marker-free and vector backbone sequence-free Xa21 transgenic rice. Chin J Biotechnol. 2:204–210; 2006 (article in Chinese)

    Google Scholar 

  • Yao, Q.; Cong, L.; Wang; Y. S.; Chen, M. J.; Yang, G. X. Inheritance of the foreign gene cassettes lacking vector backbone sequences. HEREDITAS (Beijing). 6:695–698; 2006 (article in Chinese)

    Google Scholar 

  • Zhang, W.; Subbarao, S.; Addae, P.; Shen, C.; Armstrong, C.; Peschke, V.; Gilbertson, L. Cre/lox-mediated marker gene excision in transgenic maiza (Zea mays L.) plants. Theor. Appl. Genet. 107:1157–1168; 2003

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y.; Yu Y.C.; Qian Q; Yan M. X.; Huang D. N. Cotransformation of rice by bar and cecropin B gene expression cassettes lacking vector backbone sequences. Acta Genet Sin. 2:135–141; 2003 (article in Chinese).

    Google Scholar 

  • Zubko, E.; Scutt, C.; Meyer, P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol. 18:442–445; 2000

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was carried out in the State Key Laboratory of Rice Biology in China National Rice Research Institute and supported by the grants from the National Nature Science Foundation of China (Nos. 30425034 and 30370132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Qian.

Additional information

Editor: D. Dutis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Qian, Q., Wang, HZ. et al. Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA. In Vitro Cell.Dev.Biol.-Plant 43, 328–334 (2007). https://doi.org/10.1007/s11627-007-9051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-007-9051-8

Keywords

Navigation