Skip to main content
Log in

Immediate regularization of measure-type population densities in a two-dimensional chemotaxis system with signal consumption

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the Neumann initial-boundary value problem for a classical chemotaxis system with signal consumption in a disk. In contrast to previous studies which have established a comprehensive theory of global classical solutions for suitably regular nonnegative initial data, the focus in the present work is on the question to which extent initially prescribed singularities can be regularized despite the presence of the nonlinear cross-diffusive interaction. The main result in this paper asserts that at least in the framework of radial solutions immediate regularization occurs under an essentially optimal condition on the initial distribution of the population density. More precisely, it will turn out that for any radially symmetric initial data belonging to the space of regular signed Borel measures for the population density and to L2 for the signal density, there exists a classical solution to the Neumann initial-boundary value problem, which is smooth and approaches the given initial data in an appropriate trace sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreucci D. Degenerate parabolic equations with initial data measures. Trans Amer Math Soc, 1997, 349: 3911–3923

    Article  MathSciNet  Google Scholar 

  2. Bedrossian J, Masmoudi N. Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in ℝ2 with measure-valued initial data. Arch Ration Mech Anal, 2014, 214: 717–801

    Article  MathSciNet  Google Scholar 

  3. Bellomo N, Bellouquid A, Tao Y, et al. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math Models Methods Appl Sci, 2015, 25: 1663–1763

    Article  MathSciNet  Google Scholar 

  4. Brézis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011

    MATH  Google Scholar 

  5. Brézis H, Friedman A. Nonlinear parabolic equations involving measures as initial conditions. J Math Pures Appl (9), 1983, 62: 73–97

    MathSciNet  MATH  Google Scholar 

  6. Cao X. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin Dyn Syst, 2015, 35: 1891–1904

    Article  MathSciNet  Google Scholar 

  7. Chang S Y A, Yang P C. Conformal deformation of metrics on \({S^2}\). J Differential Geom, 1988, 27: 259–296

    Article  MathSciNet  Google Scholar 

  8. Cieślak T, Stinner C. Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J Differential Equations, 2012, 252: 5832–5851

    Article  MathSciNet  Google Scholar 

  9. Duan R, Li X, Xiang Z. Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system. J Differential Equations, 2017, 263: 6284–6316

    Article  MathSciNet  Google Scholar 

  10. Duan R, Lorz A, Markowich P A. Global solutions to the coupled chemotaxis-fluid equations. Comm Partial Differential Equations, 2010, 35: 1635–1673

    Article  MathSciNet  Google Scholar 

  11. Fujie K, Ito A, Winkler M, et al. Stabilization in a chemotaxis model for tumor invasion. Discrete Contin Dyn Syst, 2016, 36: 151–169

    MathSciNet  MATH  Google Scholar 

  12. Giga Y, Miyakawa T, Osada H. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch Ration Mech Anal, 1988, 104: 223–250

    Article  MathSciNet  Google Scholar 

  13. Herrero M A, Velázquez J J L. A blow-up mechanism for a chemotaxis model. Ann Sc Norm Super Pisa Cl Sci (5), 1997, 24: 633–683

    MathSciNet  MATH  Google Scholar 

  14. Hillen T, Painter K. A user’s guide to PDE models for chemotaxis. J Math Biol, 2009, 58: 183–217

    Article  MathSciNet  Google Scholar 

  15. Jin H Y, Wang Z A. Global stability of prey-taxis systems. J Differential Equations, 2017, 262: 1257–1290

    Article  MathSciNet  Google Scholar 

  16. Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theoret Biol, 1970, 26: 399–415

    Article  MathSciNet  Google Scholar 

  17. Kozono H, Yamazaki M. Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data. Comm Partial Differential Equations, 1994, 19: 959–1014

    Article  MathSciNet  Google Scholar 

  18. Lankeit J. Long-term behaviour in a chemotaxis-fluid system with logistic source. Math Models Methods Appl Sci, 2016, 26: 2071–2109

    Article  MathSciNet  Google Scholar 

  19. Luckhaus S, Sugiyama Y, Velazquez J J L. Measure valued solutions of the 2D Keller-Segel system. Arch Ration Mech Anal, 2012, 206: 31–80

    Article  MathSciNet  Google Scholar 

  20. Nagai T, Senba T, Yoshida K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial Ekvac, 1997, 40: 411–433

    MathSciNet  MATH  Google Scholar 

  21. Osaki K, Yagi A. Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial Ekvac, 2001, 44: 441–469

    MathSciNet  MATH  Google Scholar 

  22. Peng Y, Xiang Z. Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary. Math Models Methods Appl Sci, 2018, 28: 869–920

    Article  MathSciNet  Google Scholar 

  23. Porzio M M, Vespri V. Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J Differential Equations, 1993, 103: 146–178

    Article  MathSciNet  Google Scholar 

  24. Raczynski A. Stability property of the two-dimensional Keller-Segel model. Asymptot Anal, 2009, 61: 35–59

    Article  MathSciNet  Google Scholar 

  25. Raphaël P, Schweyer R. On the stability of critical chemotactic aggregation. Math Ann, 2014, 359: 267–377

    Article  MathSciNet  Google Scholar 

  26. Senba T, Suzuki T. Local and norm behavior of blowup solutions to a parabolic system of chemotaxis. J Korean Math Soc, 2000, 37: 929–941

    MathSciNet  MATH  Google Scholar 

  27. Souplet P, Winkler M. Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions n ≽ 3. Comm Math Phys, 2019, 367: 665–681

    Article  MathSciNet  Google Scholar 

  28. Tao Y, Winkler M. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J Differential Equations, 2012, 252: 692–715

    Article  MathSciNet  Google Scholar 

  29. Tao Y, Winkler M. Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J Differential Equations, 2012, 252: 2520–2543

    Article  MathSciNet  Google Scholar 

  30. Wang Y. Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity. Math Models Methods Appl Sci, 2017, 27: 2745–2780

    Article  MathSciNet  Google Scholar 

  31. Wang Y, Winkler M, Xiang Z. Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Ann Sc Norm Super Pisa Cl Sci (5), 2018, 18: 421–466

    MathSciNet  MATH  Google Scholar 

  32. Wang Y, Winkler M, Xiang Z. The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system. Math Z, 2018, 289: 71–108

    Article  MathSciNet  Google Scholar 

  33. Winkler M. Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Comm Partial Differential Equations, 2012, 37: 319–351

    Article  MathSciNet  Google Scholar 

  34. Winkler M. Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl (9), 2013, 100: 748–767

    Article  MathSciNet  Google Scholar 

  35. Winkler M. Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch Ration Mech Anal, 2014, 211: 455–487

    Article  MathSciNet  Google Scholar 

  36. Winkler M. Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J Math Anal, 2015, 47: 3092–3115

    Article  MathSciNet  Google Scholar 

  37. Winkler M. How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Trans Amer Math Soc, 2017, 369: 3067–3125

    Article  MathSciNet  Google Scholar 

  38. Winkler M. How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two-and higher-dimensional parabolic-elliptic cases. Math Ann, 2019, 373: 1237–1282

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Applied Fundamental Research Program of Sichuan Province (Grant No. 2018JY0503) and Xihua University Scholars Training Program. The second author was supported by the Deutsche Forschungsgemeinschaft in the context of the project Emergence of Structures and Advantages in Cross-Diffusion Systems (Grant No. 411007140, GZ: WI 3707/5-1). The third author was supported by National Natural Science Foundation of China (Grant Nos. 11971093 and 11771045), the Applied Fundamental Research Program of Sichuan Province (Grant No. 20YYJC4388), and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2019J096). The authors are very grateful to the referees for their helpful suggestions. The third author expresses his hearty gratitude to Professor Tong Yang at the City University of Hong Kong for introducing the problem with measure valued initial data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyin Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Winkler, M. & Xiang, Z. Immediate regularization of measure-type population densities in a two-dimensional chemotaxis system with signal consumption. Sci. China Math. 64, 725–746 (2021). https://doi.org/10.1007/s11425-020-1708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1708-0

Keywords

MSC(2010)

Navigation