Skip to main content
Log in

A user’s guide to PDE models for chemotaxis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical modelling of chemotaxis (the movement of biological cells or organisms in response to chemical gradients) has developed into a large and diverse discipline, whose aspects include its mechanistic basis, the modelling of specific systems and the mathematical behaviour of the underlying equations. The Keller-Segel model of chemotaxis (Keller and Segel in J Theor Biol 26:399–415, 1970; 30:225–234, 1971) has provided a cornerstone for much of this work, its success being a consequence of its intuitive simplicity, analytical tractability and capacity to replicate key behaviour of chemotactic populations. One such property, the ability to display “auto-aggregation”, has led to its prominence as a mechanism for self-organisation of biological systems. This phenomenon has been shown to lead to finite-time blow-up under certain formulations of the model, and a large body of work has been devoted to determining when blow-up occurs or whether globally existing solutions exist. In this paper, we explore in detail a number of variations of the original Keller–Segel model. We review their formulation from a biological perspective, contrast their patterning properties, summarise key results on their analytical properties and classify their solution form. We conclude with a brief discussion and expand on some of the outstanding issues revealed as a result of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegretto W., Xie H., Yang S.: Properties of solutions for a chemotaxis system. J. Math. Biol. 35, 949–966 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Alt W.: Biased random walk model for chemotaxis and related diffusion approximation. J. Math. Biol. 9, 147–177 (1980)

    MATH  MathSciNet  Google Scholar 

  3. Alt W., Lauffenburger D.A.: Transient behavior of a chemotaxis system modelling certain types of tissue inflammation. J. Math. Biol. 24(6), 691–722 (1987)

    MATH  MathSciNet  Google Scholar 

  4. Baker M.D., Wolanin P.M., Stock J.B.: Signal transduction in bacterial chemotaxis. Bioessays 28(1), 9–22 (2006)

    Google Scholar 

  5. Balding D., McElwain D.L.: A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114(1), 53–73 (1985)

    Google Scholar 

  6. Biler P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8(2), 715–743 (1998)

    MATH  MathSciNet  Google Scholar 

  7. Biler P.: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9(1), 347–359 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Boon J.P., Herpigny B.: Model for chemotactic bacterial bands. Bull. Math. Biol. 48(1), 1–19 (1986)

    MATH  Google Scholar 

  9. Budd C.J., Carretero-Gonzd́flez R., Russell R.D.: Precise computations of chemotactic collapse using moving mesh methods. J. Comput. Phys. 202(2), 463–487 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Budick S.A., Dickinson M.H.: Free-flight responses of Drosophila melanogaster to attractive odors. J. Exp. Biol. 209(15), 3001–3017 (2006)

    Google Scholar 

  11. Budrene E.O., Berg H.C.: Complex patterns formed by motile cells of Escherichia coli. Nature 349(6310), 630–633 (1991)

    Google Scholar 

  12. Budrene E.O., Berg H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376(6535), 49–53 (1995)

    Google Scholar 

  13. Burger, M., Di Francesco, M., Dolak-Struss, Y.: The Keller-Segel model for chemotaxis: linear vs. nonlinear diffusion. SIAM J. Math. Anal. (2008) (to appear)

  14. Byrne H.M., Cave G., McElwain D.L.: The effect of chemotaxis and chemokinesis on leukocyte locomotion: a new interpretation of experimental results. IMA J. Math. Appl. Med. Biol. 15(3), 235–256 (1998)

    MATH  Google Scholar 

  15. Byrne H.M., Owen M.R.: A new interpretation of the Keller–Segel model based on multiphase modelling. J. Math. Biol. 49, 604–626 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Chaplain M.A.: Mathematical modelling of angiogenesis. J. Neurooncol. 50(1–2), 37–51 (2000)

    Google Scholar 

  17. Chaplain M.A.J., Stuart A.M.: A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168 (1993)

    MATH  Google Scholar 

  18. Childress S., Percus J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    MATH  MathSciNet  Google Scholar 

  19. Condeelis J., Singer R.H., Segall J.E.: The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21, 695–718 (2005)

    Google Scholar 

  20. Corrias L., Perthame B., Zaag H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Dahlquist F.W., Lovely P., Koshland D.E.: Quantitative analysis of bacterial migration in chemotaxis. Nat. New Biol. 236, 120–123 (1972)

    Google Scholar 

  22. Dallon J.C., Othmer H.G.: A discrete cell model with adaptive signalling for aggregation of dictyostelium discoideum. Philos. Trans. R. Soc. B 352, 391–417 (1997)

    Google Scholar 

  23. Dkhil F.: Singular limit of a degenerate chemotaxis-fisher equation. Hiroshima Math. J. 34, 101–115 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Dolak Y., Hillen T.: Cattaneo models for chemotaxis, numerical solution and pattern formation. J. Math. Biol. 46(2), 153–170 (2003)

    MATH  MathSciNet  Google Scholar 

  25. Dolak Y., Schmeiser C.: The Keller-Segel model with logistic sensitivity function and small diffusivity. SIAM J. Appl. Math. 66, 286–308 (2005)

    MATH  MathSciNet  Google Scholar 

  26. Dormann D., Weijer C.J.: Chemotactic cell movement during Dictyostelium development and gastrulation. Curr. Opin. Genet. Dev. 16(4), 367–373 (2006)

    Google Scholar 

  27. Eberl H.J., Parker D.F., van Loosdrecht M.C.M.: A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3(3), 161–175 (2001)

    MATH  Google Scholar 

  28. Eisenbach M.: Chemotaxis. Imperial College Press, London (2004)

    Google Scholar 

  29. Ford R.M., Lauffenburger D.A.: Measurement of bacterial random motility and chemotaxis coefficients: II. application of single cell based mathematical model. Biotechnol. Bioeng. 37, 661–672 (1991)

    Google Scholar 

  30. Gajewski H., Zacharias K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 159, 77–114 (1998)

    MathSciNet  Google Scholar 

  31. Gueron S., Liron N.: A model of herd grazing as a travelling wave, chemotaxis and stability. J. Math. Biol. 27(5), 595–608 (1989)

    MATH  MathSciNet  Google Scholar 

  32. Henry M., Hilhorst D., Schätzle R.: Convergence to a viscocity solution for an advection- reaction-diffusion equation arising from a chemotaxis-growth model. Hiroshima Math. J. 29, 591–630 (1999)

    MATH  MathSciNet  Google Scholar 

  33. Hildebrand E., Kaupp U.B.: Sperm chemotaxis: a primer. Ann. N. Y. Acad. Sci. 1061, 221–225 (2005)

    Google Scholar 

  34. Hillen T.: A classification of spikes and plateaus. SIAM Rev. 49(1), 35–51 (2007)

    MATH  MathSciNet  Google Scholar 

  35. Hillen T., Othmer H.G.: The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math. 61(3), 751–775 (2000)

    MATH  MathSciNet  Google Scholar 

  36. Hillen T., Painter K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280–301 (2001)

    MATH  MathSciNet  Google Scholar 

  37. Hillen T., Painter K., Schmeiser C.: Global existence for chemotaxis with finite sampling radius. Discr. Cont. Dyn. Syst. B 7(1), 125–144 (2007)

    MATH  MathSciNet  Google Scholar 

  38. Höfer T., Sherratt J.A., Maini P.K.: Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. Lond. B. 259, 249–257 (1995)

    Google Scholar 

  39. Horstmann D.: Lyapunov functions and L p-estimates for a class of reaction-diffusion systems. Coll. Math. 87, 113–127 (2001)

    MATH  MathSciNet  Google Scholar 

  40. Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresberichte DMV 105(3), 103–165 (2003)

    MATH  MathSciNet  Google Scholar 

  41. Horstmann D., Stevens A.: A constructive approach to traveling waves in chemotaxis. J. Nonlin. Sci. 14(1), 1–25 (2004)

    MATH  MathSciNet  Google Scholar 

  42. Jabbarzadeh E., Abrams C.F.: Chemotaxis and random motility in unsteady chemoattractant fields: a computational study. J. Theor. Biol. 235(2), 221–232 (2005)

    MathSciNet  Google Scholar 

  43. Kareiva P., Odell G.: Swarms of predators exhibit ’prey-taxis’ if individual predators use area-restricted search. Am. Nat. 130(2), 233–270 (1987)

    Google Scholar 

  44. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Google Scholar 

  45. Keller E.F., Segel L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Google Scholar 

  46. Keller E.F., Segel L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 377–380 (1971)

    Google Scholar 

  47. Kennedy J.S., Marsh D.: Pheromone-regulated anemotaxis in flying moths. Science 184, 999–1001 (1974)

    Google Scholar 

  48. Kim I.C.: Limits of chemotaxis growth model. Nonlinear Anal. 46, 817–834 (2001)

    MATH  MathSciNet  Google Scholar 

  49. Kolokolnikov T., Erneux T., Wei J.: Mesa-type patterns in the one-dimensional Brusselator and their stability. Physica D 214, 63–77 (2006)

    MATH  MathSciNet  Google Scholar 

  50. Kowalczyk R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305, 566–588 (2005)

    MATH  MathSciNet  Google Scholar 

  51. Kuiper H.: A priori bounds and global existence for a strongly coupled quasilinear parabolic system modelling chemotaxis. Electron. J. Differ. Equ. 52, 1–18 (2001)

    MathSciNet  Google Scholar 

  52. Kuiper H., Dung L.: Global attractors for cross-diffusion systems on domains of arbitrary dimensions. Rocky Mountain J. Math. 37(5), 1645–1668 (2007)

    MATH  MathSciNet  Google Scholar 

  53. Landman K.A., Pettet G.J., Newgreen D.F.: Chemotactic cellular migration: smooth and discontinuous travelling wave solutions. SIAM J. Appl. Math. 63(5), 1666–1681 (2003)

    MATH  MathSciNet  Google Scholar 

  54. Landman K.A., Pettet G.J., Newgreen D.F.: Mathematical models of cell colonization of uniformly growing domains. Bull. Math. Biol. 65(2), 235–262 (2003)

    Google Scholar 

  55. Lapidus I.R., Schiller R.: Model for the chemotactic response of a bacterial population. Biophys. J 16(7), 779–789 (1976)

    Google Scholar 

  56. Larrivee B., Karsan A.: Signaling pathways induced by vascular endothelial growth factor (review). Int. J. Mol. Med. 5(5), 447–456 (2000)

    Google Scholar 

  57. Lauffenburger D.A., Kennedy C.R.: Localized bacterial infection in a distributed model for tissue inflammation. J. Math. Biol. 16(2), 141–163 (1983)

    MATH  Google Scholar 

  58. Lee, J.M., Hillen, T., Lewis, M.A.: Continuous travelling waves for prey-taxis. Bull. Math. Biol. (2007) (in review)

  59. Levine H.A., Sleeman B.D.: A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57, 683–730 (1997)

    MATH  MathSciNet  Google Scholar 

  60. Logan J.A., White B.J., Bentz P., Powell J.A.: Model analysis of spatial patterns in Mountain Pine Beetle outbreaks. Theor. Popul. Biol. 53(3), 236–255 (1998)

    MATH  Google Scholar 

  61. Luca M., Chavez-Ross A., Edelstein-Keshet L., Mogilner A.: Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: is there a connection? Bull. Math. Biol. 65(4), 693–730 (2003)

    Google Scholar 

  62. Maini P.K., Myerscough M.R., Winters K.H., Murray J.D.: Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull. Math. Biol. 53(5), 701–719 (1991)

    MATH  Google Scholar 

  63. Mantzaris N.V., Webb S., Othmer H.G.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49(2), 111–187 (2004)

    MATH  MathSciNet  Google Scholar 

  64. Maree A.F., Hogeweg P.: How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 98(7), 3879–3883 (2001)

    Google Scholar 

  65. Mimura M., Tsujikawa T.: Aggregation pattern dynamics in a chemotaxis model including growth. Physica A 230, 499–543 (1996)

    Google Scholar 

  66. Mittal N., Budrene E.O., Brenner M.P., Van Oudenaarden A.: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA 100(23), 13259–13263 (2003)

    Google Scholar 

  67. Mori I., Ohshima Y.: Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Bioessays 19(12), 1055–1064 (1997)

    Google Scholar 

  68. Murray J.D.: Mathematical Biology II: Spatial Models and Biochemical Applications, 3rd edn. Springer, New York (2003)

    Google Scholar 

  69. Murray J.D., Myerscough M.R.: Pigmentation pattern formation on snakes. J. Theor. Biol. 149(3), 339–360 (1991)

    Google Scholar 

  70. Myerscough M.R., Maini P.K., Painter K.J.: Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60(1), 1–26 (1998)

    MATH  Google Scholar 

  71. Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40(3), 411–433 (1997)

    MATH  MathSciNet  Google Scholar 

  72. Nanjundiah V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

    Google Scholar 

  73. Odell G.M., Keller E.F.: Traveling bands of chemotactic bacteria revisited. J. Theor. Biol. 56(1), 243–247 (1976)

    Google Scholar 

  74. Osaki K., Tsujikawa T., Yagi A., Mimura M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    MATH  MathSciNet  Google Scholar 

  75. Osaki K., Yagi A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MATH  MathSciNet  Google Scholar 

  76. Othmer H.G., Dunbar S.R., Alt W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    MATH  MathSciNet  Google Scholar 

  77. Othmer H.G., Hillen T.: The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62(4), 1122–1250 (2002)

    MathSciNet  Google Scholar 

  78. Othmer H.G., Stevens A.: Aggregation, blowup and collapse: The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081 (1997)

    MATH  MathSciNet  Google Scholar 

  79. Owen M.R., Sherratt J.A.: Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interactions. J. Theor. Biol. 189(1), 63–80 (1997)

    Google Scholar 

  80. Painter K., Hillen T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart. 10(4), 501–543 (2002)

    MATH  MathSciNet  Google Scholar 

  81. Painter K.J., Maini P.K., Othmer H.G.: Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model. J. Math. Biol. 41(4), 285–314 (2000)

    MATH  MathSciNet  Google Scholar 

  82. Painter K.J., Maini P.K., Othmer H.G.: Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41(4), 285–314 (2000)

    MATH  MathSciNet  Google Scholar 

  83. Painter K.J., Othmer H.G., Maini P.K.: Stripe formation in juvenile pomacanthus via chemotactic response to a reaction-diffusion mechanism. Proc. Natl. Acad. Sci. USA 96, 5549–5554 (1999)

    Google Scholar 

  84. Palsson E., Othmer H.G.: A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 97(19), 10448–10453 (2000)

    Google Scholar 

  85. Park H.T., Wu J., Rao Y.: Molecular control of neuronal migration. Bioessays 24(9), 821–827 (2002)

    Google Scholar 

  86. Patlak C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    MathSciNet  Google Scholar 

  87. Perthame B.: Transport Equations in Biology. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  88. Perumpanani A.J., Sherratt J.A., Norbury J., Byrne H.M.: Biological inferences from a mathematical model for malignant invasion. Invas. Metastas. 16(4–5), 209–221 (1996)

    Google Scholar 

  89. Post. K.: A non-linear parabolic system modeling chemotaxis with sensitivity functions (1999)

  90. Potapov A., Hillen T.: Metastability in chemotaxis models. J. Dyn. Diff. Equ. 17, 293–330 (2005)

    MATH  MathSciNet  Google Scholar 

  91. Rascle M., Ziti C.: Finite time blow up in some models of chemotaxis. J. Math. Biol. 33, 388–414 (1995)

    MATH  MathSciNet  Google Scholar 

  92. Rivero M.A., Tranquillo R.T., Buettner H.M., Lauffenburger D.A.: Transport models for chemotactic cell populations based on individual cell behavior. Chem. Eng. Sci. 44, 1–17 (1989)

    Google Scholar 

  93. Segel L.A.: Incorporation of receptor kinetics into a model for bacterial chemotaxis. J. Theor. Biol. 57(1), 23–42 (1976)

    MathSciNet  Google Scholar 

  94. Segel L.A.: A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32, 653–665 (1977)

    MATH  Google Scholar 

  95. Sherratt J.A.: Chemotaxis and chemokinesis in eukaryotic cells: the Keller-Segel equations as an approximation to a detailed model. Bull. Math. Biol. 56(1), 129–146 (1994)

    MATH  Google Scholar 

  96. Sherratt J.A., Sage E.H., Murray J.D.: Chemical control of eukaryotic cell movement: a new model. J. Theor. Biol. 162(1), 23–40 (1993)

    Google Scholar 

  97. Stevens A.: The derivation of chemotaxis-equations as limit dynamics of moderately interacting stochastic many particle systems. SIAM J. Appl. Math. 61(1), 183–212 (2000)

    MATH  MathSciNet  Google Scholar 

  98. Suzuki T.: Free Energy and Self-Interacting Particles. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  99. Tranquillo R.T., Lauffenburger D.A., Zigmond S.H.: A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J. Cell Biol. 106(2), 303–309 (1988)

    Google Scholar 

  100. Tyson R., Lubkin S.R., Murray J.D.: A minimal mechanism for bacterial pattern formation. Proc. R. Soc. Lond. B 266, 299–304 (1999)

    Google Scholar 

  101. Tyson R., Lubkin S.R., Murray J.D.: Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38(4), 359–375 (1999)

    MATH  MathSciNet  Google Scholar 

  102. Velazquez J.J.L.: Point dynamics for a singular limit of the Keller-Segel model. I. motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)

    MATH  MathSciNet  Google Scholar 

  103. Velazquez J.J.L.: Point dynamics for a singular limit of the Keller-Segel model. II. formation of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)

    MATH  MathSciNet  Google Scholar 

  104. Wang X.: Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics. SIAM J. Math. Ana. 31, 535–560 (2000)

    MATH  Google Scholar 

  105. Wang, Z.A., Hillen, T.: Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos, 17(037108) (2007), 13 pp

    Google Scholar 

  106. Wang Z.A., Hillen T.: Shock formation in a chemotaxis model. Math. Methods Appl. Sci. 31(1), 45–70 (2008)

    MATH  MathSciNet  Google Scholar 

  107. Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal dependent sensitivity

  108. Woodward D.E., Tyson R., Myerscough M.R., Murray J.D., Budrene E.O., Berg H.C.: Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 2181–2189 (1995)

    Google Scholar 

  109. Wrzosek D.: Long time behaviour of solutions to a chemotaxis model with volume filling effect. Proc. Roy. Soc. Edinb. Sect. A 136, 431–444 (2006)

    MATH  MathSciNet  Google Scholar 

  110. Wrzosek, D.: Global attractor for a chemotaxis model with prevention of overcrowding. Nonlin. Ana. 59, 1293–1310, P2004

  111. Wu D.: Signaling mechanisms for regulation of chemotaxis. Cell Res. 15(1), 52–56 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hillen.

Additional information

T. Hillen was supported by NSERC and K. J. Painter was partially supported by NIH Grant CA113004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillen, T., Painter, K.J. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009). https://doi.org/10.1007/s00285-008-0201-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0201-3

Mathematics Subject Classification (2000)

Navigation