Skip to main content
Log in

Global boundedness and large time behavior in a chemotaxis system with indirect signal consumption

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the corresponding initial-boundary value system as follows:

$$\begin{aligned} \left\{ \begin{aligned}&u_t=\nabla \cdot (D(u)\nabla u)-\nabla \cdot (S(u)\nabla v)+f(u),&x\in \Omega ,t>0,\\&v_t=\Delta v-vw,&x\in \Omega ,t>0,\\&w_t=-\delta w+u,&x\in \Omega ,t>0\\ \end{aligned} \right. \end{aligned}$$

under homogeneous Neumann boundary conditions in a smoothly bounded domain \(\Omega \subset {\mathbb {R}}^n(n\geqslant 2)\), where the parameter \(\delta >0\) and \(f(u)=\mu (u-u^r)\) with \(\mu \ge 0,r>1\). DS are smooth functions satisfying \(D(u)\geqslant K_0(u+1)^\alpha \), \(0\le S(u)\le K_1(u+1)^{\beta -1}u\) with \(\alpha ,\beta \in {\mathbb {R}}\) and \(K_0,K_1>0\). When \(\mu =0\), \(D(u)=K_0\) and \(\beta \le 1\), we proved that the system has a globally bounded classical solution, provided that \(n\le 2\), or \(n\ge 3\) with suitably small initial data. Furthermore, when \(\mu >0\), we proved that the system possesses a globally bounded solution for \(\beta <\text { max }\Bigl \{\frac{\alpha +r}{2}, \frac{\frac{n+2}{n}r+\alpha -1}{2}\Bigr \}\). Moreover, when \(f(u)=\mu (u-u^2)\) in the case of \(\beta =\frac{\alpha +2}{2}, n\ge 4\), we obtained the global existence and bounded solution, provided that \(\mu \) is properly large. Finally, we showed these solutions converge to \((1,0,\frac{1}{\delta })\) as \(t\rightarrow \infty \) and the decay state is exponential for the model with sufficiently large \(\mu \) by constructing suitable functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baghaei, K., Khelghati, A.: Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant. C. R. Acad. Sci. Paris Ser I 355, 633–639 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35, 1891–1904 (2015)

    Article  MathSciNet  Google Scholar 

  5. Corrias, L., Perthame, B.: Asymptotic decay for the solutions of the parabolic–parabolic Keller–Segel chemotaxis system in critical spaces. Math. Comput. Model. 47, 755–764 (2008)

    Article  MathSciNet  Google Scholar 

  6. Friedman, A.: Partial Differential Equations. Rinehart and Winston, Holt (1969)

    Google Scholar 

  7. Fuest, M.: Analysis of a chemotaxis model with indirect signal absorption. J. Differ. Equ. 267, 4778–4806 (2019)

    Article  MathSciNet  Google Scholar 

  8. Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differ. Equ. 263, 88–148 (2017)

    Article  MathSciNet  Google Scholar 

  9. Fujie, K., Senba, T.: Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension. J. Differ. Equ. 266, 942–976 (2019)

    Article  MathSciNet  Google Scholar 

  10. Herrero, M.A., Velazquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  Google Scholar 

  11. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  12. Horstmann, D.: From until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Dtsch. Math. Ver. 105(2003), 103–165 (1970)

    Google Scholar 

  13. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    Article  MathSciNet  Google Scholar 

  14. Horstmann, D., Winkler, M.: Boundedness versus blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  Google Scholar 

  15. Hu, B., Tao, Y.S.: To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math. Models Methods Appl. Sci. 26, 2111–2128 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ishida, S., Seki, K., Yokota, T.: Boundedness in a quasilinear Keller–Segel systems of parabolic-parabolic type on nonconvex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  Google Scholar 

  17. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  18. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Providence (1968)

    Book  Google Scholar 

  19. Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differ. Equ. 262, 4052–4084 (2017)

    Article  MathSciNet  Google Scholar 

  20. Lankeit, J., Wang, Y.L.: Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete Contin. Dyn. Syst. Ser. B 37, 6099–6121 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lankeit, J., Winkler, M.: Depleting the signal: analysis of chemotaxis-consumption models—a survey. arXiv:2304.02449

  22. Laurençot, P.: Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete Contin. Dyn. Syst. Ser. B 24, 6419–6444 (2019)

    MathSciNet  Google Scholar 

  23. Liu, Y., Li, Z., Huang, J.: Global boundedness and large time behavior of a chemotaxis system with indirect signal absorption. J. Differ. Equ. 269, 6365–6399 (2020)

    Article  MathSciNet  Google Scholar 

  24. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  Google Scholar 

  25. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  Google Scholar 

  26. Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)

    Article  MathSciNet  Google Scholar 

  27. Tao, Y.S.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381, 521–529 (2011)

    Article  MathSciNet  Google Scholar 

  28. Tao, Y.S., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  29. Tao, Y.S., Winkler, M.: Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion. SIAM J. Math. Anal. 47, 4229–4250 (2015)

    Article  MathSciNet  Google Scholar 

  30. Tao, Y.S., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    Article  MathSciNet  Google Scholar 

  31. Tao, Y.S., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. 19, 3641–3678 (2017)

    Article  MathSciNet  Google Scholar 

  32. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Part. Differ. Equ. 32(6), 849–877 (2007)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Part. Differ. Equ. 35(8), 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Aggregation versus global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  Google Scholar 

  35. Zhang, Q.S., Li, Y.X.: Stabilization and convergence rate in a chemotaxis system with consumption of chemoattractant. J. Math. Phys. 56, 081506-081506–10 (2015)

    Article  MathSciNet  Google Scholar 

  36. Zhang, W.J., Liu, S.Y.: Large time behavior in a quasilinear chemotaxis model with indirect signal absorption. Nonlinear Anal. 222, 112963 (2022)

    Article  MathSciNet  Google Scholar 

  37. Zheng, P., Xing, J.: Boundedness and large-time behavior for a two-dimensional quasilinear chemotaxis-growth system with indirect signal consumption. Z. Angew. Math. Phys. 71, 98 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Innovation Team Funds of China West Normal University (CXTD2020-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Li, Z. Global boundedness and large time behavior in a chemotaxis system with indirect signal consumption. Z. Angew. Math. Phys. 74, 220 (2023). https://doi.org/10.1007/s00033-023-02093-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02093-8

Keywords

Mathematics Subject Classification

Navigation