Skip to main content
Log in

The small-convection limit in a two-dimensional chemotaxis-Navier–Stokes system

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This paper deals with an initial-boundary value problem for the chemotaxis-(Navier–)Stokes system

$$\begin{aligned} \left\{ \begin{array}{lcll} n_t + u\cdot \nabla n &{}=&{} \Delta n - \nabla \cdot (n\nabla c), \qquad &{}\quad x\in \Omega , \ t>0, \\ c_t + u\cdot \nabla c &{}=&{}\Delta c - nc, \qquad &{}\quad x\in \Omega , \ t>0, \\ u_t + \kappa (u\cdot \nabla )u &{}=&{} \Delta u - \nabla P + n\nabla \phi , \qquad &{}\quad x\in \Omega , \ t>0, \\ \nabla \cdot u =0, &{} &{} \qquad &{}\quad x\in \Omega , t>0, \end{array} \right. \end{aligned}$$

in a bounded convex domain \(\Omega \subset \mathbb {R}^2\) with smooth boundary, with \(\kappa \in \mathbb {R}\) and a given smooth potential \(\phi :\Omega \rightarrow \mathbb {R}\). It is known that for each \(\kappa \in \mathbb {R}\) and all sufficiently smooth initial data this problem possesses a unique global classical solution \((n^{(\kappa )},c^{(\kappa )},u^{(\kappa }))\). The present work asserts that these solutions stabilize to \((n^{(0)},c^{(0)},u^{(0)})\) uniformly with respect to the time variable. More precisely, it is shown that there exist \(\mu >0\) and \(C>0\) such that whenever \(\kappa \in (-1,1)\),

$$\begin{aligned}&\Big \Vert n^{(\kappa )}(\cdot ,t)-n^{(0)}(\cdot ,t)\Big \Vert _{L^\infty (\Omega )} + \Big \Vert c^{(\kappa )}(\cdot ,t)-c^{(0)}(\cdot ,t)\Big \Vert _{L^\infty (\Omega )} \\&\quad +\, \Big \Vert u^{(\kappa )}(\cdot ,t)-u^{(0)}(\cdot ,t)\Big \Vert _{L^\infty (\Omega )} \le C |\kappa | e^{-\mu t} \end{aligned}$$

for all \(t>0\). This result thereby provides an example for a rigorous quantification of stability properties in the Stokes limit process, as frequently considered in the literature on chemotaxis-fluid systems in application contexts involving low Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glasnik Mat. 35(55), 161–177 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. TMA 23(9), 1189–1209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. 55, 107 (2016)

  5. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Difrancesco, M., Lorz, A., Markowich, P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. A 28, 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duan, R., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan, R., Xiang, Z.: A note on global existence for the chemotaxis—Stokes model with nonlinear diffusion. Int. Math. Res. Notices IMRN 2014, 1833–1852 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Espejo, E.E., Winkler, M.: Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier–Stokes system modeling coral fertilization (preprint)

  10. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    MATH  Google Scholar 

  11. Fujie, K., Ito, A., Winkler, M., Yokota, T.: Stabilization in a chemotaxis model for tumor invasion. Discrete Contin. Dyn. Syst. 36, 151–169 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fujiwara, D., Morimoto, H.: An \(L^r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Giga, Y.: Solutions for semilinear parabolic equations in \(L_p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MATH  Google Scholar 

  15. Giga, Y., Sohr, H.: Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  17. Herschlag, G., Miller, M.: Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish. J. Theor. Biol. 285, 84–95 (2011)

    Article  MathSciNet  Google Scholar 

  18. Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid. J. Funct. Anal. 2(70), 1663–1683 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leray, J.: Sur le mouvement d’un liquide visqueus amplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. In: Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Providence, R.I. (1968)

  21. Liu, J., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. I. H. Poincaré-AN 28, 643–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lieberman, G.: Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions. Ann. Mat. Pura Appl. 148, 77–99 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions, P.L.: Résolution de problèmes elliptiques quasilinéaires. Arch. Ration. Mech. Anal. 74, 335–353 (1980)

    Article  MATH  Google Scholar 

  24. Porzio, M.M., Vespri, V.: Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103(1), 146–178 (1993)

    Article  MATH  Google Scholar 

  25. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  26. Tan, Z., Zhang, X.: Decay estimates of the coupled chemotaxis-fluid equations in \({\mathbb{R}}^3\). J. Math. Anal. Appl. 410(1), 27–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tao, Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381, 521–529 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. A 32(5), 1901–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. I. H. Poincaré-AN 30, 157–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257, 784–815 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tuval, I., Cisneros, L., Dombrowski, C., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  33. Vorotnikov, D.: Weak solutions for a bioconvection model related to Bacillus subtilis. Commun. Math. Sci. 12, 545–563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Cao, X.: Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. B 20, 3235–3254 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211(2), 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Variat. 54, 3789–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. I. H. Poincaré-AN 33, 1329–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. 369, 3067–3125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ye, X.: Existence and decay of global smooth solutions to the coupled chemotaxis-fluid model. J. Math. Anal. Appl. 427, 60–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Q., Li, Y.: Convergence rates of solutions for a two-dimensional chemotaxis-Navier–Stokes system. Discrete Contin. Dyn. Syst. Ser. B 20, 2751–2759 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 259, 3730–3754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier–Stokes equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was initiated while the second author visited Xihua University and the University of Electronic Science and Technology of China in Chengdu in January 2016. He is very grateful for the warm hospitality. Y. Wang was supported by the NNSF of China (no. 11501457). Z. Xiang was supported by the NNSF of China (no. 11571063, 11501086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyin Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Winkler, M. & Xiang, Z. The small-convection limit in a two-dimensional chemotaxis-Navier–Stokes system. Math. Z. 289, 71–108 (2018). https://doi.org/10.1007/s00209-017-1944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1944-6

Keywords

Mathematics Subject Classification

Navigation