Skip to main content
Log in

Two-dimensional Navier-Stokes flow with measures as initial vorticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aronson, D. G., Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73, 890–896 (1968).

    Google Scholar 

  2. Aronson, D. G., & J. Serrin, Local behavior of solutions of quasilinear parabolic equations. Arch. Rational Mech. Anal. 25, 81–122 (1967).

    Google Scholar 

  3. Benfatto, G., Esposito, R., & M. Pulvirenti, Planar Navier-Stokes flow for singular initial data. Nonlinear Anal. 9, 533–545 (1985).

    Google Scholar 

  4. Bergh, J., & J. Löfström, Interpolation Spaces, An Introduction. Berlin Heidelberg New York: Springer-Verlag 1976.

    Google Scholar 

  5. Brézis, H., & A. Friedman, Nonlinear parabolic equations involving measures as initial data. J. Math. Pures et appl. 62, 73–97 (1983).

    Google Scholar 

  6. Dobrushin, R. L., Prescribing a system of random variables by conditional distributions. Theory Prob. Appl. 15, 458–486 (1970).

    Google Scholar 

  7. Fabes, E. B., Jones, B. F., & N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in L p Arch. Rational Mech. Anal. 45, 222–240 (1972).

    Google Scholar 

  8. Friedman, A., Partial Differential Equations of Parabolic Type. New Jersey: Prentice-Hall 1964.

    Google Scholar 

  9. Friedman, A., Partial Differential Equations. New York: Holt, Rinehart & Winston 1969.

    Google Scholar 

  10. Fujita, H., & T. Kato, On the Navier-Stokes initial value problem I. Arch. Rational Mech. Anal. 16, 269–315 (1964).

    Google Scholar 

  11. Giga, Y., & T. Miyakawa, Solutions in L r of the Navier-Stokes initial value problem. Arch. Rational Mech. Anal. 89, 267–281 (1985).

    Google Scholar 

  12. Giga, Y., Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Differential Equations 62, 186–212 (1986).

    Google Scholar 

  13. Gilbarg, D., & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed. Berlin Heidelberg New York: Springer-Verlag 1983.

    Google Scholar 

  14. Kato, T., Strong Lp-solutions of the Navier-Stokes equation in R m, with applications to weak solutions. Math. Z. 187, 471–480 (1984).

    Google Scholar 

  15. Kato, T., Remarks on the Euler and Navier-Stokes equations in R 2. Nonlinear Functional Analysis and its Applications, F. E. Browder ed., Proc. of Symposia in Pure Math. 45, part 2, 1–8. Providence, RI: Amer. Math. Soc. 1986.

  16. Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon & Breach 1969.

    Google Scholar 

  17. Leray, J., Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. pures et appl., Serie 9, 12, 1–82 (1933).

    Google Scholar 

  18. Liu, T.-P., & M. Pierre, Source-solutions and asymptotic behavior in conservation laws. J. Differential Equations 51, 419–441 (1984).

    Google Scholar 

  19. Marchioro, C., & M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory. Commun. Math. Phys. 84, 483–503 (1982).

    Google Scholar 

  20. Marchioro, C., & M. Pulvirenti, Euler evolution for singular initial data and vortex theory. Commun. Math. Phys. 91, 563–572 (1983).

    Google Scholar 

  21. McGrath, F. J., Nonstationary planar flow of viscous and ideal fluids. Arch. Rational Mech. Anal. 27, 329–348 (1968).

    Google Scholar 

  22. McKean, H. P., Jr., Propagation of chaos for a class of nonlinear parabolic equations. Lecture series in differential equations, Session 7: Catholic Univ. 1967.

  23. Niwa, Y., Semilinear heat equations with measures as initial data. Preprint.

  24. Osada, H., & S. Kotani, Propagation of chaos for the Burgers equation. J. Math. Soc. Japan 37, 275–294 (1985).

    Google Scholar 

  25. Osada, H., Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ. 27, 597–619 (1987).

    Google Scholar 

  26. Osada, H., Propagation of chaos for the two dimensional Navier-Stokes equations. Probabilistic Methods in Math. Phys., K. Ito & N. Ikeda eds., 303–334, Tokyo: Kinokuniya 1987.

    Google Scholar 

  27. Ponce, G., On two dimensional incompressible fluids. Commun. Partial Differ. Equations 11, 483–511 (1986).

    Google Scholar 

  28. Reed, M., & B. Simon, Methods of Modern Mathematical Physics Vol. I, II; New York: Academic Press 1972, 1975.

    Google Scholar 

  29. Sznitman, A. S., Propagation of chaos result for the Burgers equation. Probab. Th. Rel. Fields 71, 581–613 (1986).

    Google Scholar 

  30. Temam, R., Navier-Stokes Equations. Amsterdam: North-Holland 1977.

    Google Scholar 

  31. Turkington, B., On the evolution of a concentrated vortex in an ideal fiuid. Arch. Rational Mech. Anal. 97, 75–87 (1987).

    Google Scholar 

  32. Wahl, W. von, The Equations of Navier-Stokes and Abstract Parabolic Equations. Braunschweig: Vieweg Verlag 1985.

    Google Scholar 

  33. Weissler, F. B., The Navier-Stokes initial value problem in L p. Arch. Rational Mech. Anal. 74, 219–230 (1980).

    Google Scholar 

  34. Kato, T., & G. Ponce, Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue spaces L ps (R 2). Rev. Mat. Iberoamericana 2, 73–88 (1986).

    Google Scholar 

  35. Baras, P., & M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures. Applicable Analysis 18, 111–149 (1984).

    Google Scholar 

  36. DiPerna, R. J., & A. J. Majda, Concentrations in regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. 16, 301–345 (1987).

    Google Scholar 

  37. Cottet, G.-H., Équations de Navier-Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sc. Ser. 1, 303, 105–108 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Dafermos

The research reported here was partially supported by the Japan Ministry of Education, Science and Culture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giga, Y., Miyakawa, T. & Osada, H. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104, 223–250 (1988). https://doi.org/10.1007/BF00281355

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00281355

Keywords

Navigation