Skip to main content
Log in

Stabilization in a two-dimensional chemotaxis-Navier–Stokes system

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper deals with an initial-boundary value problem for the system

$$\left\{ \begin{array}{llll} n_t + u\cdot\nabla n &=& \Delta n -\nabla \cdot (n\chi(c)\nabla c), \quad\quad & x\in\Omega, \, t > 0,\\ c_t + u\cdot\nabla c &=& \Delta c-nf(c), \quad\quad & x\in\Omega, \, t > 0,\\ u_t + \kappa (u\cdot \nabla) u &=& \Delta u + \nabla P + n \nabla\phi, \qquad & x\in\Omega, \, t > 0,\\ \nabla \cdot u &=& 0, \qquad & x\in\Omega, \, t > 0,\end{array} \right.$$

which has been proposed as a model for the spatio-temporal evolution of populations of swimming aerobic bacteria. It is known that in bounded convex domains \({\Omega \subset \mathbb{R}^2}\) and under appropriate assumptions on the parameter functions χ, f and ϕ, for each \({\kappa\in\mathbb{R}}\) and all sufficiently smooth initial data this problem possesses a unique global-in-time classical solution. The present work asserts that this solution stabilizes to the spatially uniform equilibrium \({(\overline{n_0},0,0)}\) , where \({\overline{n_0}:=\frac{1}{|\Omega|} \int_\Omega n(x,0)\,{\rm d}x}\) , in the sense that as t→∞,

$$n(\cdot,t) \to \overline{n_0}, \qquad c(\cdot,t) \to 0 \qquad \text{and}\qquad u(\cdot,t) \to 0$$

hold with respect to the norm in \({L^\infty(\Omega)}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G.: The Porous Medium Equation. Nonlinear diffusion problems (Montecatini Terme, 1985), 146; Lect. Notes Math., vol. 1224. Springer, Berlin, 1986

  2. Bernis F.: Finite speed of propagation for thin viscous flows when 2 ≤  n <  3. C. R. Acad. Sci. Paris Sér. I Math. 322(12), 1169–1174 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Chae M., Kang K., Lee J.: Existence of Smooth Solutions to Coupled Chemotaxis-Fluid Equations. Discrete Contin. Dyn. Syst. 33(6), 2271–2297 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dal Passo R., Garcke H., Grün G.: On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. 29(2), 321–342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duan, R., Xiang, Z.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Notices. doi: 10.1093/imrn/rns270 (2012)

  6. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1-4 (2004)

    Google Scholar 

  7. DiFrancesco M., Lorz A., Markowich P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. A 28, 1437–1453 (2010)

    Article  MathSciNet  Google Scholar 

  8. Duan R.J., Lorz A., Markowich P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York, 1969

  10. Fujita H., Kato T.: On the Navier–Stokes initial-value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Giga Y., Sohr H.: Abstract L p estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Henry D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    MATH  Google Scholar 

  14. Herrero M.A., Velázquez J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 24(4), 633–683 (1997)

    MATH  Google Scholar 

  15. Hillen T., Painter K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329(2), 819–824 (1992)

    MATH  Google Scholar 

  17. Keller E.F., Segel L.A.: Travelling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)

    Article  MATH  Google Scholar 

  18. Kiselev A., Ryzhik L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ. Equ. 37(2), 298–318 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu J.-G., Lorz A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 643–652 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Lorz A.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nagai T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6(1), 37–55 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Nagai T., Senba T., Yoshida K.: Application of the Moser–Trudinger inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40, 411–433 (1997)

    MATH  MathSciNet  Google Scholar 

  23. Perthame B.: Transport Equations in Biology. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  24. Sohr H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001)

    MATH  Google Scholar 

  25. Tao Y., Winkler M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252(3), 2520–2543 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Tao Y., Winkler M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. 32(5), 1901–1914 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tao Y., Winkler M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(1), 157–178 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland, Amsterdam, 1977

  29. Tuval I., Cisneros L., Dombrowski C., Wolgemuth C.W., Kessler J.O., Goldstein R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  ADS  MATH  Google Scholar 

  30. Wiegner M.: The Navier–Stokes equations—a neverending challenge? Jber.. DMV 101, 1–25 (1999)

    MATH  MathSciNet  Google Scholar 

  31. Winkler M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  ADS  MATH  Google Scholar 

  32. Winkler M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37(2), 319–351 (2012)

    Article  MATH  Google Scholar 

  33. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. (2013, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, M. Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch Rational Mech Anal 211, 455–487 (2014). https://doi.org/10.1007/s00205-013-0678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0678-9

Keywords

Navigation