Skip to main content

Advertisement

Log in

Method and mechanism of chromium removal from soil: a systematic review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metal pollution has increasingly affected human life, and the treatment of heavy metal pollution, especially chromium pollution, is still a major problem in the field of environmental governance. As a commonly used industrial metal, chromium can easily enter the environment with improperly treated industrial waste or wastewater, then pollute soil and water sources, and eventually accumulate in the human body through the food chain. Many countries and regions in the world are threatened by soil chromium pollution, resulting in the occurrence of cancer and a variety of metabolic diseases. However, as a serious threat to agriculture, food, and human health. Notwithstanding, there are limited latest and systematic review on the removal methods, mechanisms, and effects of soil chromium pollution in recent years. Hence, this article outlines some of the methods and mechanisms for the removal of chromium in soil, including physical, chemical, biological, and biochar methods, which provide a reference for the treatment and research on soil chromium pollution drawn from existing publications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data analyzed during this study are included in this article.

References

  • Abbas A, Azeem M, Naveed M, Latif A, Bashir S, Ali A, Bilal M, Ali L (2020) Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. Int J Phytoremediat 22:52–61

    Article  CAS  Google Scholar 

  • Abdin Y, Usman A, Yong SO, Tsang YF, Al-Wabel M (2019): Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: contrasting effects of mesquite and fishbone biochars. Environmental Research 181, 108846

  • Agrafioti E, Kalderis D, Diamadopoulos E (2014) Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manage 133:309–314

    Article  CAS  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. Journal of Genetic Engineering Biotechnology 13:51–58

    Article  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Aigbe UO, Ukhurebor KE, Onyancha RB, Osibote OA, Darmokoesoemo H, Kusuma HS (2021) Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. Journal of Materials Research and Technology-Jmr&t 14:2751–2774

    Article  CAS  Google Scholar 

  • Almeida JC, Cardoso CED, Tavares DS, Freitas R, Trindade T, Vale C, Pereira E (2019) Chromium removal from contaminated waters using nanomaterials - a review. Trac-Trends in Analytical Chemistry 118:277–291

    Article  CAS  Google Scholar 

  • An Q, Deng S, Xu J, Nan H, Li Z, Song JL (2020): Simultaneous reduction of nitrate and Cr(VI) by Pseudomonas aeruginosa strain G12 in wastewater. Ecotoxicol Environ Saf 191, 110001

  • Aparicio J, Sola MZS, Benimeli CS, Amoroso MJ, Polti MA (2015) Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane. Ecotox Environ Safe 116:34–39

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR, Pease AJ, Malaisse F (1983): Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaïre. Plant and Soil 73

  • Barrera-Diaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223:1–12

    Article  CAS  Google Scholar 

  • Bennett RM, Cordero PRF, Bautista GS, Dedeles GR (2013) Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chem Ecol 29:320–328

    Article  CAS  Google Scholar 

  • Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Pollut Res Int 20:6628–6637

    Article  CAS  Google Scholar 

  • Bian H, Wan J, Muhammad T, Wang GH, Sang L, Jiang LL, Wang HD, Zhang YJ, Peng C, Zhang W, Cao XD, Lou ZY (2021) Computational study and optimization experiment of nZVI modified by anionic and cationic polymer for Cr(VI) stabilization in soil: kinetics and response surface methodology (RSM). Environ Pollut 276:11

    Article  CAS  Google Scholar 

  • Bibi S, Hussain A, Hamayun M, Rahman H, Iqbal A, Shah M, Irshad M, Qasim M, Islam B (2018): Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere 211

  • Boeri M, Oliveri C, Camurati C, Viarengo A, Sforzini S (2017) Effects of Cr(VI) on Ca2+-ATPase activity in the earthworm Eisenia andrei. Comp Biochem Physiol C-Toxicol Pharmacol 203:21–28

    Article  CAS  Google Scholar 

  • Bošnir J, Puntarić D, Cvetković Ž, Pollak L, Barušić L, Klarić I, Miškulin M, Puntarić I, Puntarić E, Milošević, (2013) Effects of magnesium, chromium, iron and zinc from food supplements on selected aquatic organisms. Coll Antropol 37:965–971

    Google Scholar 

  • Chang JJ, Deng SJ, Liang Y, Chen JQ (2019) Cr(VI) removal performance from aqueous solution by Pseudomonas sp. strain DC-B3 isolated from mine soil: characterization of both Cr(VI) bioreduction and total Cr biosorption processes. Environ Sci Pollut Res 26:28135–28145

    Article  CAS  Google Scholar 

  • Chen QY, Tyrer M, Hills CD, Yang XM, Carey P (2009) Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manage 29:390–403

    Article  CAS  Google Scholar 

  • Chen HB, Qin P, Yang X, Bhatnagar A, Shaheen SM, Rinklebe J, Wu FC, Xu S, Che L, Wang HL (2021): Sorption of diethyl phthalate and cadmium by pig carcass and green waste-derived biochars under single and binary systems. Environmental Research 193

  • Christl I, Imseng M, Tatti E, Frommer J, Viti C, Giovannetti L, Kretzschmar R (2012) Aerobic reduction of chromium(VI) by Pseudomonas corrugata28: influence of metabolism and fate of reduced chromium. Geomicrobiol J 29:173–185

    Article  CAS  Google Scholar 

  • Coelho LC, Bastos ARR, Pinho PJ, Souza GA, Carvalho JG, Coelho VAT, Oliveira LCA, Domingues RR, Faquin V (2017) Marigold (Tagetes erecta): the potential value in the phytoremediation of chromium. Pedosphere 27:559–568

    Article  CAS  Google Scholar 

  • Das A, Mishra S (2009) Hexavalent chromium (VI): environment pollutant and health hazard. J Environ Res Dev 2:386–392

    Google Scholar 

  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2014) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291

    Article  CAS  Google Scholar 

  • Di Palma L, Gueye MT, Petrucci E (2015) Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron. J Hazard Mater 281:70–76

    Article  CAS  Google Scholar 

  • Essahale A, Malki M, Marin I, Moumni M (2012) Hexavalent chromium reduction and accumulation by acinetobacter AB1 isolated from Fez Tanneries in Morocco. Indian J Microbiol 52:48–53

    Article  CAS  Google Scholar 

  • Fang Z, Tao L, Zichao Z, Wenjing L (2021): Remediation of hexavalent chromium in column by green synthesized nanoscale zero-valent iron/nickel: factors, migration model and numerical simulation Ecotox. Environ. Safe. 207

  • Fendorf SE (1995): Surface reactions of chromium in soils and waters Geoderma 67

  • Fu R-B, Liu F, Zhang C-B, Ma J (2013) Effects of permeable reactive composite electrodes on hexavalent chromium in the electrokinetic remediation of contaminated soil. Environ Eng Sci 30:17–22

    Article  CAS  Google Scholar 

  • Fu R, Wen D, Xia X, Zhang W, Gu Y (2017) Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chem Eng J 316:601–608

    Article  CAS  Google Scholar 

  • Gadd GM (1993): Tansley review No. 47. Interactions of fungi with toxic metals. New Phytologist 124

  • Gao M, Zeng FJ, Tang F, Wang KD, Xu XY, Tian GM (2020): An increasing Cr recovery from soil with catholyte-enhanced electrokinetic remediation: effects on voltage redistribution throughout soil sections. Separation and Purification Technology 253

  • Ge SM, Ge SC, Zhou MH, Dong XJ (2015) Bioremediation of hexavalent chromate using permeabilized Brevibacterium sp and Stenotrophomonas sp cells. J Environ Manage 157:54–59

    Article  CAS  Google Scholar 

  • Gitipour S, Ahmadi S, Madadian E, Ardestani M (2016) Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent. Environ Technol 37:145–151

    Article  CAS  Google Scholar 

  • Gonzalez CF, Ackerley DF, Park CH, Matin AJAB (2010): A soluble flavoprotein contributes to chromate reduction and tolerance by Pseudomonas putida. 23, 233-239

  • Govarthanan M, Selvankumar T, Mythili R, Srinivasan P, Ameen F, AlYahya SA, Kamala-Kannan S (2019) Biogreen remediation of chromium-contaminated soil using Pseudomonas sp. (RPT) and neem (Azadirachta indica) oil cake. Int J Environ Sci Technol 16:4595–4600

    Article  CAS  Google Scholar 

  • He Z, Gao F, Sha T, Hu Y, He C (2009) Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–873

    Article  CAS  Google Scholar 

  • He ZG, Li SZ, Wang LS, Zhong H (2014) Characterization of five chromium-removing bacteria isolated from chromium-contaminated soil. Water Air Soil Pollut 225:10

    Google Scholar 

  • He Z, Hu Y, Yin Z, Hu Y, Zhong H (2016) Microbial diversity of chromium-contaminated soils and characterization of six chromium-removing bacteria. Environ Manage 57:1319–1328

    Article  Google Scholar 

  • Hora A, Shetty KV (2014) Inhibitory and stimulating effect of single and multi-metal ions on hexavalent chromium reduction by Acinetobacter sp. Cr-B2. World J Microbiol Biotechnol 30:3211–3219

    Article  CAS  Google Scholar 

  • Houssou AA, Jeyakumar P, Niazi NK, Van Zwieten L, Li X, Huang LX, Wei L, Zheng XD, Huang Q, Huang YF, Huang XZ, Wang HL, Liu ZZ, Huang ZR (2022): Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. in contaminated soils. Biochar 4

  • Hu L, Liu B, Li SZ, Zhong H, He ZG (2021) Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. Chemosphere 269:11

    Article  CAS  Google Scholar 

  • Huang X, Zhuang RL, Muhammad F, Yu L, Shiau YC, Li DW (2017) Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Chemosphere 168:300–308

    Article  CAS  Google Scholar 

  • Huang T, Liu L, Zhou L, Zhang S (2018) Electrokinetic removal of chromium from chromite ore-processing residue using graphite particle-supported nanoscale zero-valent iron as the three-dimensional electrode. Chem Eng J 350:1022–1034

    Article  CAS  Google Scholar 

  • Ilic DS, Dimkic IZ, Waisi HK, Gkorezis PM, Hamidovic SR, Raicevic VB, Lalevic BT (2019) Reduction of hexavalent chromium by Bacillus spp. isolated from heavy metal-polluted soil. Chem Ind Chem Eng Q 25:247–258

    Article  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018): Biological approaches to tackle heavy metal pollution: a survey of literature. J. Environ. Manage. 217

  • Järup L (2003): Hazards of heavy metal contamination %J British Medical Bulletin. 68

  • Jean-Soro L, Bordas F, Bollinger JC (2012) Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environ Pollut 164:175–181

    Article  CAS  Google Scholar 

  • Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium Cr(VI): a comprehensive review. Chemosphere 207:255–266

    Article  CAS  Google Scholar 

  • Karthik C, Oves M, Sathya K, Sri Ramkumar V, Arulselvi PI (2016) Isolation and characterization of multi-potential Rhizobium strain ND2 and its plant growth-promoting activities under Cr(VI) stress. Archives of Agronomy and Soil Science 63:1058–1069

    Article  CAS  Google Scholar 

  • Kaur J, Kaur M, Ubhi MK, Kaur N, Greneche JM (2021) Composition optimization of activated carbon-iron oxide nanocomposite for effective removal of Cr(VI)ions. Mater Chem Phys 258:13

    Article  CAS  Google Scholar 

  • Khurshid S, Shoaib A, Javaid A, Abid K (2016) Bioaccumulation of chromium by Fusarium oxysporum. ScienceAsia 42:92–98

    Article  CAS  Google Scholar 

  • Komarek M, Vanek A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides–a review. Environ Pollut 172:9–22

    Article  CAS  Google Scholar 

  • Kumari D, Pan X, Zhang D, Zhao C, Al-Misned FA, Mortuza MG (2015) Bioreduction of Hexavalent chromium from soil column leachate by Pseudomonas stutzeri. Bioremediat J 19:249–258

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota - a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • L G-TJ, R P-VJ, M M, G dlR, B C-D (2004): Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresource technology 92

  • Li YJ, Wang WY, Zhou LQ, Liu YY, Mirza ZA, Lin X (2017) Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Chemosphere 169:131–138

    Article  CAS  Google Scholar 

  • Li YY, Zhang TT, Ning Z, Chen JH (2020) Characteristics and applications of sewage sludge biochar modified by ferrous sulfate for remediating Cr(VI)-contaminated soils. Adv Civ Eng 2020:10

    Google Scholar 

  • Li Q, Xiang P, Zhang T, Wu Q, Bao Z, Tu W, Li L, Zhao C (2022): The effect of phosphate mining activities on rhizosphere bacterial communities of surrounding vegetables and crops. Sci Total Environ, 153479

  • Liu J, Duan CQ, Zhang XH, Zhu YNA, Lu XY (2011) Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J Hazard Mater 188:85–91

    Article  CAS  Google Scholar 

  • Liu LW, Li W, Song WP, Guo MX (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Long DY, Hashmi MZ, Su XM, Pongpiachan S (2019): Cr(VI) reduction by an extracellular polymeric substance (EPS) produced from a strain of Pseudochrobactrum saccharolyticum. 3 Biotech 9

  • Long B, Ye J, Ye Z, He J, Luo Y, Zhao Y, Shi J (2020): Cr(VI) removal by Penicillium oxalicum SL2: reduction with acidic metabolites and form transformation in the mycelium. Chemosphere 253, 126731

  • Lu P, Feng Q, Meng Q, Yuan T (2012) Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site. Sep Purif Technol 98:216–220

    Article  CAS  Google Scholar 

  • Lv D, Zhou JS, Cao Z, Xu J, Liu YL, Li YZ, Yang KL, Lou ZM, Lou LP, Xu XH (2019) Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere 224:306–315

    Article  CAS  Google Scholar 

  • Manikandan M, Kannan V, Mahalingam K, Vimala A, Chun S (2016) Phytoremediation potential of chromium-containing tannery effluent-contaminated soil by native Indian timber-yielding tree species. Prep Biochem Biotechnol 46:100–108

    Article  CAS  Google Scholar 

  • Mbangi A, Muchaonyerwa P, Zengeni R (2018) Accumulation of multiple heavy metals in plants grown on soil treated with sewage sludge for more than 50 years presents health risks and an opportunity for phyto-remediation. Water SA 44:569–576

    Article  CAS  Google Scholar 

  • McCullough J, Hazen T (2003): Bioremediation of metals and radionuclides: what it is and how it works (2nd Edition)

  • Minari GD, Saran LM, Constancio MTL, da Silva RC, Rosalen DL, de Melo WJ, Alves LMC (2020) Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil. Ecotox Environ Safe 204:12

    Article  CAS  Google Scholar 

  • Morales-Barrera L, Contreras-Juarez CM, Sanchez-Pardo ME, Sanchez-Garcia D, Pineda-Camacho G, Cristiani-Urbina E (2010) Isolation, identification and characterization of a Fusarium lichenicola strain with high Cr(VI) reduction potential. Fresenius Environ Bull 19:1640–1647

    CAS  Google Scholar 

  • Muhammad F, Xia M, Li S, Yu X, Mao YH, Muhammad F, Huang X, Jiao BQ, Yu L, Li DW (2019) The reduction of chromite ore processing residues by green tea synthesized nano zerovalent iron and its solidification/stabilization in composite geopolymer. J Clean Prod 234:381–391

    Article  CAS  Google Scholar 

  • Murugavelh S, Mohanty K (2014) Mechanism of Cr(VI) bioaccumulation by Phanerochaete chrysosporium. Environ Eng Manag J 13:281–287

    Article  CAS  Google Scholar 

  • Nafees M, Ali S, Naveed M, Rizwan M (2018) Efficiency of biogas slurry and Burkholderia phytofirmans PsJN to improve growth, physiology, and antioxidant activity of Brassica napus L. in chromium-contaminated soil. Environ Sci Pollut Res 25:6387–6397

    Article  CAS  Google Scholar 

  • Nasiri A, Jamshidi-Zanjani A, Darban AK (2020): Application of enhanced electrokinetic approach to remediate Cr-contaminated soil: effect of chelating agents and permeable reactive barrier. Environmental Pollution 266

  • Nguema PF, Luo ZJ (2012) Aerobic chromium(VI) reduction by chromium-resistant bacteria isolated from activated sludge. Ann Microbiol 62:41–47

    Article  CAS  Google Scholar 

  • Onyancha RB, Aigbe UO, Ukhurebor KE, Muchiri PW (2021): Facile synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields: a comprehensive review. Journal of Molecular Structure 1238

  • Panda J, Sarkar P (2012) Bioremediation of chromium by novel strains Enterobacter aerogenes T2 and Acinetobacter sp. PD 12 S2. Environ Sci Pollut Res Int 19:1809–1817

    Article  CAS  Google Scholar 

  • Pandey J, Verma RK, Singh S (2019) Screening of most potential candidate among different lemongrass varieties for phytoremediation of tannery sludge contaminated sites. Int J Phytoremediation 21:600–609

    Article  CAS  Google Scholar 

  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451

    Article  CAS  Google Scholar 

  • Patil RA, Zodape SP (2011) X-ray diffraction and SEM investigation of solidification/stabilization of nickel and chromium using fly ash. E-J Chem 8:S395–S403

    Article  CAS  Google Scholar 

  • Pattnaik S, Dash D, Mohapatra S, Pattnaik M, Marandi AK, Das S, Samantaray DP (2020): Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere 240, 124895

  • Pei QH, Shahir S, Santhana Raj AS, Zakaria ZA, Ahmad WA (2009) Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol 25:1085–1093

    Article  CAS  Google Scholar 

  • Peters RWJJoHM (1999): Chelant extraction of heavy metals from contaminated soils. 66, 151–210

  • Pourkarim S, Ostovar F, Mahdavianpour M, Moslemzadeh M (2017) Adsorption of chromium(VI) from aqueous solution by Artist’s Bracket fungi. Sep Sci Technol 52:1733–1741

    Article  CAS  Google Scholar 

  • Qian LB, Shang X, Zhang B, Zhang WY, Su AQ, Chen Y, Ouyang D, Han L, Yan JC, Chen MF (2019) Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Chemosphere 215:739–745

    Article  CAS  Google Scholar 

  • Raaman N, Mahendran B, Jaganathan C, Sukumar S, Chandrasekaran V (2012) Removal of chromium using Rhizobium leguminosarum. World J Microbiol Biotechnol 28:627–636

    Article  CAS  Google Scholar 

  • Rafique MI, Usman ARA, Ahmad M, Al-Wabel MI (2021) Immobilization and mitigation of chromium toxicity in aqueous solutions and tannery waste-contaminated soil using biochar and polymer-modified biochar. Chemosphere 266:14

    Article  CAS  Google Scholar 

  • Saeedi M, Li LY, Gharehtapeh AM (2013) Effect of alternative electrolytes on enhanced electrokinetic remediation of hexavalent chromium in clayey soil. Int J Environ Res 7:39–50

    CAS  Google Scholar 

  • Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae strain Cr11. Chemosphere 86:847–852

    Article  CAS  Google Scholar 

  • Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806

    Article  CAS  Google Scholar 

  • Santiago-Cruz MA, Villagrán-Vargas E, Velázquez-Rodríguez AS, Vernon-Carter EJ, Cruz-Sosa F, Orozco-Villafuerte J, Buendía-González L (2014): Exploring the Cr(VI) phytoremediation potential of Cosmos bipinnatus. Water, Air, & Soil Pollution 225

  • Sathishkumar K, Murugan K, Benelli G, Higuchi A, Rajasekar A (2016) Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Ann Microbiol 67:91–98

    Article  CAS  Google Scholar 

  • Shoaib A, Nisar Z, Nafisa JA, Khurshid S, Javed S (2019) Necrotrophic fungus Macrophomina phaseolina tolerates chromium stress through regulating antioxidant enzymes and genes expression (MSN1 and MT). Environ Sci Pollut Res Int 26:12446–12458

    Article  CAS  Google Scholar 

  • Shukla VY, Tipre DR, Dave SR (2014) Optimization of chromium(VI) detoxification by Pseudomonas aeruginosa and Its application for treatment of industrial waste and contaminated soil. Bioremediat J 18:128–135

    Article  CAS  Google Scholar 

  • Simon Sola MZ, Lovaisa N, Davila Costa JS, Benimeli CS, Polti MA, Alvarez A (2019) Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation. Chemosphere 222:679–687

    Article  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Song YS, Zhang J, Yu SF, Wang TC, Cui XX, Du XM, Jia G (2012) Effects of chronic chromium(VI) exposure on blood element homeostasis: an epidemiological study. Metallomics 4:463–472

    Article  CAS  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Kalra A (2014) A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environ Sci Pollut Res Int 21:1971–1979

    Article  CAS  Google Scholar 

  • Su H, Fang Z, Tsang PE, Fang J, Zhao D (2016) Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environ Pollut 214:94–100

    Article  CAS  Google Scholar 

  • Su CQ, Li LQ, Yang ZH, Chai LY, Liao Q, Shi Y, Li JW (2019) Cr(VI) reduction in chromium-contaminated soil by indigenous microorganisms under aerobic condition. Transactions of Nonferrous Metals Society of China 29:1304–1311

    Article  CAS  Google Scholar 

  • Su CL, Wang S, Zhou ZY, Wang HJ, Xie XJ, Yang YY, Feng Y, Liu WF, Liu P (2021) Chemical processes of Cr(VI) removal by Fe-modified biochar under aerobic and anaerobic conditions and mechanism characterization under aerobic conditions using synchrotron-related techniques. Sci Total Environ 768:11

    Article  CAS  Google Scholar 

  • Sun H, Brocato J, Costa M (2015) Oral chromium exposure and toxicity. Current Environmental Health Reports 2:295

    Article  CAS  Google Scholar 

  • Sun YH, Zheng FY, Wang WJ, Zhang SW, Wang FY (2020): Remediation of Cr(VI)-contaminated soil by nano-zero-valent iron in combination with biochar or humic acid and the consequences for plant performance. Toxics 8

  • Tan H, Wang C, Zeng G, Luo Y, Li H, Xu H (2020): Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. J. Hazard. Mater. 386

  • Troiano JM, Jordan DS, Hull CJ, Geiger FM (2013) Interaction of Cr(III) and Cr(VI) with hematite studied by second harmonic generation. J Phys Chem C 117:5164–5171

    Article  CAS  Google Scholar 

  • Ukhurebor KE, Aigbe UO, Onyancha RB, Nwankwo W, Osibote OA, Paumo HK, Ama OM, Adetunji CO, Siloko IU (2021): Effect of hexavalent chromium on the environment and removal techniques: a review. J. Environ. Manage. 280

  • Wang JL, Wang SZ (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227:1002–1022

    Article  CAS  Google Scholar 

  • Wang DH, Li GH, Qin SQ, Tao WG, Gong SH, Wang J (2021) Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation. Ecotox Environ Safe 208:8

    Google Scholar 

  • Wang Q, Li Q, Lin Y, Hou Y, Deng Z, Liu W, Wang H, Xia Z (2020): Biochemical and genetic basis of cadmium biosorption by Enterobacter ludwigii LY6, isolated from industrial contaminated soil. Environ Pollut 264, 114637

  • Wu B, Wang ZR, Peng DH, Wang Y, He TT, Tang H, Xu H (2020) Removal and recovery of heavy metals from soil with sodium alginate coated FeSSi nanocomposites in a leaching process. J Hazard Mater 398:11

    Article  CAS  Google Scholar 

  • Wu JN, Li QQ, Lv ZW (2020b): Regulating and intervening act of Cr chemical speciation effect on the electrokinetic removal in Cr contaminated soil in arid area. Separation and Purification Technology 250

  • Xia SP, Song ZL, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, Bolan N, Wang HL (2019) A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit Rev Environ Sci Technol 49:1027–1078

    Article  CAS  Google Scholar 

  • Xiao Y, Xiao CY, Zhao F (2020): Long-term adaptive evolution of Shewanella oneidensis MR-1 for establishment of high concentration Cr(VI) tolerance. Frontiers of Environmental Science & Engineering 14

  • Xu W-h, Liu Y-g, Zeng G-m, Li X, Song H-x, Peng Q-q (2009) Characterization of Cr(VI) resistance and reduction by Pseudomonas aeruginosa. Transactions of Nonferrous Metals Society of China 19:1336–1341

    Article  CAS  Google Scholar 

  • Yao Y, Hu L, Li S, Zeng Q, Zhong H, He Z (2020): Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. Ecotoxicol Environ Saf 201, 110850

  • Yeung AT, Gu YY (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29

    Article  CAS  Google Scholar 

  • Yi S, X HF, Maruthi SBB, L MD (2005): Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environmental toxicology and chemistry 24

  • Yin YJ, Li D, Wang YQ, Xu ZH, Xu GJ, Zhao ZQ, Li S, Song LY (2019) Concurrent removal of Mn(II) and Cr(VI) by Achromobacter sp. TY3-4. Geomicrobiol J 36:317–325

    Article  CAS  Google Scholar 

  • Yu Q, Yan YJ, Lin HR, Li HL, Zheng Y, Jiao BQ, Yu L, Li DW (2020): Biosurfactants enhanced electrokinetic treatment of Cr from chromite ore processing residue based on chemical fractions. Journal of Water Process Engineering 36

  • Yuan Y, Yu S, Bañuelos GS, He Y (2016) Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation. Environ Sci Pollut Res 23:22477–22487

    Article  CAS  Google Scholar 

  • Yuan WY, Xu WT, Wu ZB, Zhang ZW, Wang LC, Bai JF, Wang XY, Zhang QW, Zhu XF, Zhang CL, Wang JW (2018) Mechanochemical treatment of Cr(VI) contaminated soil using a sodium sulfide coupled solidification/stabilization process. Chemosphere 212:540–547

    Article  CAS  Google Scholar 

  • Zhang P, Jin C, Zhao Z, Tian G (2010) 2D crossed electric field for electrokinetic remediation of chromium contaminated soil. J Hazard Mater 177:1126–1133

    Article  CAS  Google Scholar 

  • Zhang MT, Yang CH, Zhang ZL, Zhu XH, Huang WC, Zhao M, Yang K, Yu LW (2020) Understanding the binding and leaching of Cr(VI) in calcium aluminate cement based solidified/stabilized pastes. Constr Build Mater 262:10

    Google Scholar 

  • Zhang X, Yan J, Luo X, Zhu Y, Xia L, Luo L (2020b): Simultaneous ammonia and Cr (VI) removal by Pseudomonas aeruginosa LX in wastewater. Biochemical Engineering Journal 157

  • Zhao YY, Li H, Li B, Lai YW, Zang LB, Tang XD (2021) Process design and validation of a new mixed eluent for leaching Cd, Cr, Pb, Cu, Ni, and Zn from heavy metal-polluted soil. Anal Methods 13:1269–1277

    Article  CAS  Google Scholar 

  • Zheng CJ, Yang ZH, Si MY, Zhu F, Yang WC, Zhao FP, Shi Y (2021) Application of biochars in the remediation of chromium contamination: fabrication, mechanisms, and interfering species. J Hazard Mater 407:16

    Article  CAS  Google Scholar 

  • Zhou B-J, Chen T-H (2014) Biodegradation of phenol with chromium (VI) reduction by the Pseudomona ssp. strain JF122. Desalin Water Treat 57:3544–3551

    Article  CAS  Google Scholar 

  • Zhou S, Dong L, Deng P, Jia Y, Bai Q, Gao J, Xiao H (2017) Reducing capacity and enzyme activity of chromate reductase in a ChrT-engineered strain. Exp Ther Med 14:2361–2366

    Article  CAS  Google Scholar 

  • Zhu SH, Wang S, Yang X, Tufail S, Chen C, Wang X, Shang JY (2020) Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism. J Clean Prod 276:12

    Google Scholar 

  • Zibaei Z, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S (2020) Improvement of biochar capability in Cr immobilization via modification with chitosan and hematite and inoculation with Pseudomonas putida. Commun Soil Sci Plant Anal 51:963–975

    Article  CAS  Google Scholar 

  • Zibaei Z, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S (2020) Effective immobilisation of chromium in a polluted calcareous soil using modified biochar and bacterial inoculation. Chem Ecol 36:827–838

    Article  CAS  Google Scholar 

  • Zou Q, Gao YC, Yi S, Jiang JG, Aihemaiti A, Li DA, Yang M (2019) Multi-step column leaching using low-molecular-weight organic acids for remediating vanadium- and chromium-contaminated soil. Environ Sci Pollut Res 26:15406–15413

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Open Research Fund Program of State Environmental Protection Key Laboratory of Food Chain Pollution Control (No. FC2021YB08) and CAS Key Laboratory of Environmental and Applied Microbiology & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (No. KLCAS-2021–3).

Author information

Authors and Affiliations

Authors

Contributions

Documentation: Q.L. Data statistics: Z.B., H.F., L.L., and W.T. Wrote and reviewed the paper: Q.L. and Z.B.

Corresponding author

Correspondence to Qiang Li.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Kitae Baek

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Z., Feng, H., Tu, W. et al. Method and mechanism of chromium removal from soil: a systematic review. Environ Sci Pollut Res 29, 35501–35517 (2022). https://doi.org/10.1007/s11356-022-19452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19452-z

Keywords

Navigation