Skip to main content
Log in

Multi-step column leaching using low-molecular-weight organic acids for remediating vanadium- and chromium-contaminated soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In soil, vanadium (V) contamination is commonly concomitant with chromium (Cr) contamination, which poses potential risks to humans, animals, and plants due to the transfer of toxic metals and the increase in their concentrations via the food chain or through direct exposure. This study applied a multi-step column leaching process using low-molecular-weight organic acids (LMWOAs) to treat V-contaminated soil from a smelter site that contains 2015.1 mg V kg−1 and 1060.3 mg Cr kg−1. After leaching three times with an equivalent solution/soil ratio of 0.3 mL/g using 1.0 M oxalic acid solution, the total removal rates reached 77.2% and 7.2% for V and Cr, respectively, while the removal rates of the extractable fractions reached 118.6% and 99.2% due to the reduction in residual fraction (F4) of toxic metals. Simultaneously, the distribution and redistribution of geochemical fractions of V and Cr were determined with a sequential extraction technique, and the greater proportion of potential mobile fractions of V (65.1%) may increase its leaching from soil relative to Cr (7.1%). In addition, a lower pH of the leaching agent increased the efficiency of the leaching process to an extent. Compared with batch extraction with a typical solution to soil ratio of 10 mL/g, multi-step column leaching used less agent and hence produced less wastewater. This strategy could reduce the mobilization and bioavailability of toxic metals, and potentially enhance in situ soil flushing for the remediation of V- and Cr- contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnieszka J, Barbara G (2012) Chromium, nickel and vanadium mobility in soils derived from fluvioglacial sands. J Hazard Mater 237-238:315–322

    Article  CAS  Google Scholar 

  • Aihemaiti A, Jiang J, Li D, Li T, Zhang W, Ding X (2017) Toxic metal tolerance in native plant species grown in a vanadium mining area. Environ Sci Pollut Res Int 24:26839–26850

    Article  CAS  Google Scholar 

  • Alimonti APF, Krachler M, Boccaa B, Caroli S (2000) Reference values for chromium, nickel and vanadium in urine of youngsters from the urban area of Rome. J Environ Monit 2:351–354

    Article  CAS  Google Scholar 

  • Anke M (2004) Vanadium - an element both essential and toxic. Anal Real Acad Nac Farm 70:961–999

    CAS  Google Scholar 

  • Avasarala S, Lichtner PC, Ali AS, Gonzalez-Pinzon R, Blake JM, Cerrato JM (2017) Reactive transport of U and V from abandoned uranium mine wastes. Environ Sci Technol 51:12385–12393

    Article  CAS  Google Scholar 

  • Begum ZA, Rahman IM, Tate Y, Sawai H, Maki T, Hasegawa H (2012) Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere 87:1161–1170

    Article  CAS  Google Scholar 

  • Beiyuan J, Lau AYT, Tsang DCW, Zhang W, Kao CM, Baek K, Li XD (2018) Chelant-enhanced washing of CCA-contaminated soil: coupled with selective dissolution or soil stabilization. Sci Total Environ 612:1463–1472

    Article  CAS  Google Scholar 

  • Beygi M, Jalali M (2018) Background levels of some trace elements in calcareous soils of the Hamedan Province, Iran. Catena 162:303–316

    Article  CAS  Google Scholar 

  • Chair K, Bedoui A, Bensalah N, Sáez C, Fernández-Morales FJ, Cotillas S, Cañizares P, Rodrigo MA (2017) Treatment of soil-washing effluents polluted with herbicide oxyfluorfen by combined biosorption–electrolysis. Ind Eng Chem Res 56:1903–1910

    Article  CAS  Google Scholar 

  • Chen C, Tian T, Wang MK, Wang G (2016) Release of Pb in soils washed with various extractants. Geoderma 275:74–81

    Article  CAS  Google Scholar 

  • Di Palma L, Mecozzi R (2007) Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. J Hazard Mater 147:768–775

    Article  CAS  Google Scholar 

  • Fernández-Ondoño E, Bacchetta G, Lallena AM, Navarro FB, Ortiz I, Jiménez MN (2017) Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. J Geochem Explor 172:133–141

    Article  CAS  Google Scholar 

  • Goldwaser I, Gefel D, Gershonov E, Fridkin M, Shechter Y (2000) Insulin-like effects of vanadium basic and clinical implications. J Inorg Biochem 80:21–25

    Article  CAS  Google Scholar 

  • Hauser LT, Schulin R, Nowack B (2005) Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environ Sci Technol 39:6819–6824

    Article  CAS  Google Scholar 

  • Heltai G, Győri Z, Fekete I, Halász G, Kovács K, Takács A, Boros N, Horváth M (2018) Longterm study of transformation of potentially toxic element pollution in soil/water/sediment system by means of fractionation with sequential extraction procedures. Microchem J 136:85–93

    Article  CAS  Google Scholar 

  • Huang YJ, Chen CF, Huang YC, Yue QJ, Zhong CM, Tan CJ (2015) Natural radioactivity and radiological hazards assessment of bone-coal from a vanadium mine in central China. Radiat Phys Chem 107:82–88

    Article  CAS  Google Scholar 

  • Jelusic M, Lestan D (2014) Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties. Sci Total Environ 475:132–141

    Article  CAS  Google Scholar 

  • Jez E, Lestan D (2016) EDTA retention and emissions from remediated soil. Chemosphere 151:202–209

    Article  CAS  Google Scholar 

  • Jiang JG, Yang M, Gao YC, Wang JM, Li DA, Li TR (2017) Removal of toxic metals from vanadium-contaminated soils using a washing method: reagent selection and parameter optimization. Chemosphere 180:295–301

    Article  CAS  Google Scholar 

  • Kim SW, Chae Y, Moon J, Kim D, Cui R, An G, Jeong SW, An YJ (2017) In situ evaluation of crop productivity and bioaccumulation of heavy metals in paddy soils after remediation of metal-contaminated soils. J Agric Food Chem 65:1239–1246

    Article  CAS  Google Scholar 

  • Kruger O, Kalbe U, Berger W, Nordhaubeta K, Christoph G, Walzel HP (2012) Comparison of batch and column tests for the elution of artificial turf system components. Environ Sci Technol 46:13085–13092

    Article  CAS  Google Scholar 

  • Lestan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13

    Article  CAS  Google Scholar 

  • Li TR, Jiang JG, Li DA, Wang JM (2016) Solidifying effect of heavy metals in the vanadium deposit-polluted soil by iron-based solid agents. China Environ Sci 36:2108–2114

    CAS  Google Scholar 

  • Li J, Zhang Y, Du D, Liu Z (2017) Improvements in the decision making for Cleaner Production by data mining: case study of vanadium extraction industry using weak acid leaching process. J Clean Prod 143:582–597

    Article  CAS  Google Scholar 

  • Lim JW, Mimura K, Isshiki M (2004) Application of glow discharge mass spectrometry for direct trace impurity analysis in Cu films. Appl Surf Sci 227:300–305

    Article  CAS  Google Scholar 

  • Liu CC, Lin YC (2013) Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge. Environ Pollut 178:97–101

    Article  CAS  Google Scholar 

  • Liu XJ, LÜ Q, Chen SJ, Zhang ZF, Zhang SH, Sun YQ (2015) Formation of hearth sediment during vanadium titano-magnetite smelting in blast furnace No.7 of Chengde Iron and Steel Company. J Iron Steel Res Int 22:1009–1014

    Article  Google Scholar 

  • Liu H, Zhang B, Yuan H, Cheng Y, Wang S, He Z (2017) Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community. Environ Pollut 231:1362–1369

    Article  CAS  Google Scholar 

  • Ma T, Zhou L, Chen L, Li Z, Wu L, Christie P, Luo Y (2016) Oxytetracycline toxicity and its effect on phytoremediation by Sedum plumbizincicola and Medicago sativa in metal contaminated soil. J Agric Food Chem 64:8045–8053

    Article  CAS  Google Scholar 

  • Malviya R, Chaudhary R (2006) Factors affecting hazardous waste solidification/stabilization: a review. J Hazard Mater 137:267–276

    Article  CAS  Google Scholar 

  • Mittermuller M, Saatz J, Daus B (2016) A sequential extraction procedure to evaluate the mobilization behavior of rare earth elements in soils and tailings materials. Chemosphere 147:155–162

    Article  CAS  Google Scholar 

  • Mousset E, Huguenot D, Hullebusch ED, Oturan N, Guibaud G, Esposito G, Oturan MA (2016) Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry. Environ Pollut 211:354–362

    Article  CAS  Google Scholar 

  • Munoz-Morales M, Braojos M, Saez C, Canizares P, Rodrigo MA (2017) Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation. J Hazard Mater 339:232–238

    Article  CAS  Google Scholar 

  • Myron DRG, Nielsen FH (1977) Vanadium content of selected foods as determined by flameless atomic absorption spectroscopy. J Agric Food Chem 25:297–299

    Article  CAS  Google Scholar 

  • Nisse C, Tagne-Fotso R, Howsam M, Members of health examination centres of the Nord - Pas-de-Calais region N, Richeval C, Labat L, Leroyer A (2007) Blood and urinary levels of metals and metalloids in the general adult population of Northern France: The IMEPOGE study, 2008-2010. Int J Hyg Environ Health 220L: 341-36

  • Polettini A, Pomi R, Rolle E (2007) The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment. Chemosphere 66:866–877

    Article  CAS  Google Scholar 

  • Pueyo M, Mateu J, Rigol A, Vidal M, Lopez-Sanchez JF, Rauret G (2008) Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ Pollut 152:330–341

    Article  CAS  Google Scholar 

  • Reijonen I, Metzler M, Hartikainen H (2016) Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: the underlying basis for risk assessment. Environ Pollut 210:371–379

    Article  CAS  Google Scholar 

  • Shaheen SM, Rinklebe J (2014) Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228-229:142–159

    Article  CAS  Google Scholar 

  • Shaheen SM, Rinklebe J (2018) Vanadium in thirteen different soil profiles originating from Germany and Egypt: geochemical fractionation and potential mobilization. Appl Geochem 88:288–301

    Article  CAS  Google Scholar 

  • Shaheen SM, Kwon EE, Biswas JK, Tack FMG, Rinklebe J (2017) Arsenic, chromium, molybdenum, and selenium: geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere 180:553–563

    Article  CAS  Google Scholar 

  • Sracek O, Mihaljevič KB, Majer V, Filip J, Vaněk A, Penížek V, Ettler V, Mapani B (2014) Geochemistry and mineralogy of vanadium in mine tailings at Berg Aukas, northeastern Namibia. J Afr Earth Sci 96:180–189

    Article  CAS  Google Scholar 

  • Sun B, Zhao FJ, Lombi E, McGrath SP (2001) Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut 113:111–120

    Article  CAS  Google Scholar 

  • Tandy SBK, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:937–944

    Article  CAS  Google Scholar 

  • Trovo PLV, Fregolente LG, Amaral CDB, Gonzalez MH (2017) Determination of vanadium in water samples from Brazilian mineral spring (Ibirá Spa) using ICP-MS. Environ Nanotech Monitor & Manage 8:48–52

    Google Scholar 

  • Vandevivere PCS, Verstraete W, Feijtel TCJ, Schowanek DR (2001) Biodegradation of metal−[S,S]-EDDS complexes. Environ Sci Technol 35:1765–1770

    Article  CAS  Google Scholar 

  • Wang JF, Liu Z (1999) Effect of vanadium on the growth of soybean seedlings. Plant Soil 216:47–51

    Article  CAS  Google Scholar 

  • Wang G, Zhang S, Xu X, Li T, Li Y, Deng O, Gong G (2014) Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil. Chemosphere 117:617–624

    Article  CAS  Google Scholar 

  • Wang GY, Zhang SR, Xu XX, Zhong QM, Jia YX, Li T, Deng OP, Li Y (2016) Heavy metal removal by GLDA washing: optimization, redistribution, recycling, and changes in soil fertility. Sci Total Environ 569-570:557–568

    Article  CAS  Google Scholar 

  • Wang L, Lin H, Dong Y, He Y, Liu C (2018) Isolation of vanadium-resistance endophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation. J Hazard Mater 341:1–9

    Article  CAS  Google Scholar 

  • Wright MT, Stollenwerk KG, Belitz K (2014) Assessing the solubility controls on vanadium in groundwater, northeastern San Joaquin Valley, CA. Appl Geochem 48:41–52

    Article  CAS  Google Scholar 

  • Xiao X, Jiang Z, Guo Z, Wang M, Zhu H, Han X (2017a) Effect of simulated acid rain on leaching and transformation of vanadium in paddy soils from stone coal smelting area. Process Saf Environ Prot 109:697–703

    Article  CAS  Google Scholar 

  • Xiao XY, Wang MW, Zhu HW, Guo ZH, Han XQ, Zeng P (2017b) Response of soil microbial activities and microbial community structure to vanadium stress. Ecotox Environ Safe 142:200–206

    Article  CAS  Google Scholar 

  • Xu Y, Zhang Y, Liu X, Chen H, Fang Y (2018) Retrieving oil and recycling surfactant in surfactant-enhanced soil washing. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b04614

  • Yang J, Teng Y, Wu J, Chen H, Wang G, Song L, Yue W, Zuo R, Zhai Y (2017) Current status and associated human health risk of vanadium in soil in China. Chemosphere 171:635–643

    Article  CAS  Google Scholar 

  • Zemberyova M, Hagarova I, Zimova J, Bartekova J, Kuss HM (2010) Determination of molybdenum in extracts of soil and sewage sludge CRMs after fractionation by means of BCR modified sequential extraction procedure. Talanta 82:582–586

    Article  CAS  Google Scholar 

  • Zhang HJ, Gao YT, Xiong HB (2017) Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent. Environ Sci Pollut Res 24:9506–9514

    Article  CAS  Google Scholar 

  • Zupanc V, Kastelec D, Lestan D, Grcman H (2014) Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives. Environ Pollut 186:56–62

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07202005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Zou or Jianguo Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Zhihong Xu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Quan Zou and Yuchen Gao are co-first authors

Electronic supplementary material

ESM 1

(PDF 393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Q., Gao, Y., Yi, S. et al. Multi-step column leaching using low-molecular-weight organic acids for remediating vanadium- and chromium-contaminated soil. Environ Sci Pollut Res 26, 15406–15413 (2019). https://doi.org/10.1007/s11356-019-04915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04915-7

Keywords

Navigation