Skip to main content

Advertisement

Log in

Necrotrophic fungus Macrophomina phaseolina tolerates chromium stress through regulating antioxidant enzymes and genes expression (MSN1 and MT)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cr(VI) tolerance level of phytopathogenic fungus viz., Macrophomina phaseolina (Tassi) Goid was assessed through growth, morphological, physiological, and metal accumulation assays. Initially, the fungus growth assays indicated that the fungus can grow over concentration range of 20–3000 ppm and exhibited high tolerance index (0.88–1.00) and minimum inhibitory concentration at 3500 ppm of Cr. Observations under compound and scanning electron microscope un-revealed the structural features of hyphae under Cr stress as thick-walled, aggregated, branched, short and broken, along with attachment of irregular objects on them. Metal accumulation analysis revealed reduction in Cr(VI) accumulation by the fungus with increase in metal concentration in the growth medium (500–3000 ppm). Cr stress induced upregulation of antioxidant enzyme activities (catalase, peroxidase and polyphenol oxidase), expression of genes (MSN1 and metallothionein) and appearnace of new protein bands suggesting the possible role in protection and survival of M. phaseolina against Cr(VI)-induced oxidative stress. This study concludes that interference of Cr with growth and physiological process of M. phaseolina could affect its infection level on its host plant, therefore, synergistic action of two factors needs to be addressed, which may aid to guide future research efforts in understanding impact of plant-pathogen-heavy metal interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtar S, Shoaib A, Akhtar N, Mehmood R (2016) Separate and combined effects of Macrophomina phaseolina and copper on growth, physiology and antioxidative enzymes in Vigna mungo L. J Anim Plant Sci 26:1339–1345

    CAS  Google Scholar 

  • Arévalo-Rangel DL, Cárdenas-González JF, Martínez-Juárez VM, Acosta-Rodríguez I (2013) Hexavalent chromate reductase activity in cell free extracts of Penicillium spp. Bioinorg Chem Appl 2013:1–6

    Article  CAS  Google Scholar 

  • Arora P, Dilbaghi N, Chaudhury A (2012) Opportunistic invasive fungal pathogen Macrophomina phaseolina prognosis from immunocompromised humans to potential mitogenic RBL with an exceptional and novel antitumor and cytotoxic effect. Eur J Clin Microbiol Infect Dis 31:101–107

    Article  CAS  Google Scholar 

  • Babu BK, Saxena AK, Srivastava AK, Arora DK (2007) Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. Mycologia 99:797–803

    Article  CAS  Google Scholar 

  • Barsainya M, Chandra P, Singh DP (2016) Investigation of Cr (VI) uptake in saline condition using psychrophilic and mesophilic Penicillium sp. Int J Curr Microbiol App Sci 5:274–288

    Article  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D, Chalot M (2007) Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 174:151–158

    Article  CAS  Google Scholar 

  • Cervantes C, Campos GJ, Devars S, Gutiérrez CF, Loza TH, Torres JC, Moreno SR (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • De Mattia G, Bravi MC, Laurenti O, Luca OG, Palmeri A, Sabatucci A, Mendico G, Ghiselli A (2004) Impairment of cell and plasma redox state in subjects professionally exposed to chromium. Am J Ind Med 46:120–125

    Article  CAS  Google Scholar 

  • Eide D, Guarente L (1992) Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae. J Gen Microbiol 138:347–354

    Article  CAS  Google Scholar 

  • Elahi A, Rehman A (2018) Bioconversion of hemicellulosic materials into ethanol by yeast, Pichia kudriavzevii 2-KLP1, isolated from industrial waste Bioconversión de materiales hemicelulósicos en etanol por la levadura Pichia kudriavzevii 2-KLP1 aislada de residuos industriales. Rev Argent de Microbiol 50:417–425. https://doi.org/10.1016/j.ram.2017.07.008

    Article  Google Scholar 

  • Estruch F, Carlson M (1990) Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res 18:6959–6964

    Article  CAS  Google Scholar 

  • Fatmawati U (2009) Protein expression on Cr resistant microorganism using electrophoresis method. BioScience 1:31–37

    Google Scholar 

  • Frąc M, Hannula SE, Bełka M, Jędryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707

    Article  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  Google Scholar 

  • Garcia SS, Thiele DJ (2015) Copper at the fungal pathogen-host axis. J Biol Chem 290:18945–18953

    Article  CAS  Google Scholar 

  • Gimeno CJ, Fink GR (1994) Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14:2100–2112

    Article  CAS  Google Scholar 

  • Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Res/Fund Mol Mech Mutat 533:2211–2226

    Google Scholar 

  • Hassinen VH, Tuomainen M, Peräniemi S, Schat H, Kärenlampi SO, Tervahauta AI (2009) Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. J Exp Bot 60:187–196

    Article  CAS  Google Scholar 

  • Hörger AC, Fones HN, Preston GM (2013) The current status of the elemental defense hypothesis in relation to pathogens. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00395

  • Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P, Kumar S (2012) Chemodosimeters: an approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord Chem Rev 256:1992–2028

    Article  CAS  Google Scholar 

  • Khurshid S, Shoaib A, Javaid A (2014) In vitro toxicity evaluation of culture filtrates of Fusarium oxysporum f. Sp. lycopersici to growth and physiology of tomato under chromium(VI) stress. J Anim Plant Sci 24:1241–1245

    Google Scholar 

  • Khurshid S, Shoaib A, Javaid A, Abid K (2016a) Bioaccumulation of chromium by Fusarium oxysporum. Sci Asia 42:92–98

    Article  CAS  Google Scholar 

  • Khurshid S, Shoaib A, Javaid A, Qaisar U (2016b) Antifungal activity of ethyl acetate sub-fraction of methanolic extracts of Cenchrus pennisetiformis in the presence of Cr(III) and Cr(VI). Pak J Phytopathol 28:213–221

    Google Scholar 

  • Khurshid S, Shoaib A, Javaid A, Khurshid F, Shafiq M, Qaisar U (2017) Management of Fusarium wilt of tomato by soil amendment with Cenchrus pennisetiformis under chromium stress. Physiol Mol Plant Pathol 97:58–68

    Article  CAS  Google Scholar 

  • Kim YJ, Kim JH, Lee CE, Mok YG, Choi JS, Shin HS, Hwang S (2006) Expression of yeast transcriptional activator MSN1 promotes accumulation of chromium and sulfur by enhancing sulfate transporter level in plants. FEBS Lett 580:206–210

    Article  CAS  Google Scholar 

  • Ksheminska H, Fedorovych D, Babyak L, Yanovych D, Kaszycki P, Koloczek H (2005) Chromium(III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium content in selected strains of representative genera. Process Biochem 40:1565–1572

    Article  CAS  Google Scholar 

  • Kumar KB, Khan PA (1982) Peroxidase and polyphenol oxidase in excised ragi (Eleusine corocana cv PR 202) leaves during senescence. Indian J Exp Biol 20:412–416

    CAS  Google Scholar 

  • Lambrechts MG, Sollitti P, Marnur J, Pretorius IS (1996) A multicopy suppressor gene, MSS10, restores STA2 expression in Saccharomyces cerevisiae strains containing the STS10 repressor gene. Curr Genomics 29:523–529

    CAS  Google Scholar 

  • Loebus J, Leitenmaier B, Meissner D, Braha B, Krauss GJ, Dobritzsch D, Freisinger E (2013) The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification. J Inorg Biochem 127:253–260

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mayer AM, Harel E, Shaul RB (1965) Assay of catechol oxidase: a critical comparison of methods. Phytochemistry 5:783–789

    Article  Google Scholar 

  • Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43:1162–1222

    Article  CAS  Google Scholar 

  • Morkunas I, Woźniak A, Mai V, Rucińska-Sobkowiak R, Jeandet P (2018) The role of heavy metals in plant response to biotic stress. Molecules 3:2320

    Article  CAS  Google Scholar 

  • Nguyên-nhu NT, Knoops B (2002) Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicol Lett 135:219–228

    Article  Google Scholar 

  • Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS (2018) Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz J Microbiol 49:29–37

    Article  CAS  Google Scholar 

  • Ono BI, Weng M (1982) Chromium resistant mutants of the yeast Saccharomyces cerevisiae. Curr Genet 6:71–77

    Article  CAS  Google Scholar 

  • Palmiter RD (1998) The elusive function of metallothioneins. Proc Natl Acad Sci U S A 95:8428–8430

    Article  CAS  Google Scholar 

  • Poljsak B, Pócsi I, Raspor P, Pesti M (2010) Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Mbiol 50:21–36

    Article  CAS  Google Scholar 

  • Rafi S, Shoaib A, Awan ZA, Rizvi NB, Nafisa, Shafiq M (2017) Chromium tolerance, oxidative stress response, morphological characteristics and FTIR studies of phytopathogenic fungus Sclerotium rolfsii. Folia Microbiol 62:207–219

    Article  CAS  Google Scholar 

  • Reddy M, Prasanna L, Marmeisse L, Fraissinet T (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160:2235–2242

    Article  CAS  Google Scholar 

  • Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5548

    Article  CAS  Google Scholar 

  • Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21:28–44

    Article  Google Scholar 

  • Sana N, Shoaib A, Javaid A (2015a) Growth of a soil-borne plant pathogen Sclerotium rolfsii under heavy metal chromium (III) stress. Pak J Phytopathol 27:55–60

    Google Scholar 

  • Sana N, Shoaib A, Javaid A (2015b) Growth of a soil-borne plant pathogen Sclerotium rolfsii under chromium (III) stress. Pak J Phytopathol 27:55–60

    Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  CAS  Google Scholar 

  • Shenton D, Grant CM (2003) Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374:513–519

    Article  CAS  Google Scholar 

  • Shevchenko OV, Kamzel OA, Budzanivska IG, Shevchenko TP, Spaar D, Polischuk VP (2007) Heavy metal soil contamination delays the appearance of virus-induced symptoms on potato but favours virus accumulation. Arch Phytopathol Plant Protect 40:406–413

    Article  CAS  Google Scholar 

  • Shoaib A, Nafisa AN, Aftab A (2013) Fourier transform-infrared spectroscopy to monitor modifications in canola biochemistry caused by Alternaria destruens. Pakistan J Phytopathol 25:105–109

  • Shoaib A, Aslam A, Aslam N (2014) Adsorption of Cr(III) ions through efficient and eco-friendly adsorbents. J Ani. Plant Sci 24:1224–1229

    CAS  Google Scholar 

  • Shroff KA, Vaidya VK (2012) Effect of pre-treatments on the biosorption of chromium (VI) ions by the dead biomass of Rhizopus arrhizus. J Chem Technol Biotechnol 87:294–304

    Article  CAS  Google Scholar 

  • Srinivasan A, Wickes BL, Romanelli AM, Debelenko L, Rubnitz JE, Sutton DA, Thompson EH, Fothergill AW, Rinaldi MG, Hayden RT, Shenep JL (2009) Cutaneous infection caused by Macrophomina phaseolina in a child with acute myeloid leukemia. J Clin Microbiol 47:1969–1972

    Article  Google Scholar 

  • Subbaiah MV, Kalyani S, Reddy SS, Boddu VM, Krishnaiah A (2008) Biosorption of Cr(VI) from aqueous solutions using Trametes Versicolor Polyporus fungi. E-J Chem 5:499–510

    Article  CAS  Google Scholar 

  • Tucker SL, Thornton CR, Tasker K, Jacob C, Giles G, Egan M, Talbot NJ (2004) A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16:1575–1588

    Article  CAS  Google Scholar 

  • Ucun H, Bayhan YK, Kaya Y (2008) Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris L. J Hazard Mater 153:52–59

    Article  CAS  Google Scholar 

  • Vašák M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183

    Article  Google Scholar 

  • Vimercati L, Gatti MF, Gagliardi T, Cuccaro F, De Maria L, Caputi A, Quarato M, Baldassarre A (2017) Environmental exposure to arsenic and chromium in an industrial area. Environ Sci Pollut Res 24:11528–11535

    Article  CAS  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  CAS  Google Scholar 

  • Wang X, Jiang N, Liu J, Liu W, Wang GL (2014) The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence 5:722–732

    Article  CAS  Google Scholar 

Download references

Funding

The study is financially supported by the University of the Punjab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amna Shoaib.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, A., Nisar, Z., Nafisa et al. Necrotrophic fungus Macrophomina phaseolina tolerates chromium stress through regulating antioxidant enzymes and genes expression (MSN1 and MT). Environ Sci Pollut Res 26, 12446–12458 (2019). https://doi.org/10.1007/s11356-019-04457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04457-y

Keywords

Navigation