Skip to main content

Advertisement

Log in

A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF—Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
. 6

Similar content being viewed by others

References

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    Article  CAS  Google Scholar 

  • Asmatullah Qureshi SN, Shakoori AR (1998) Hexavalent chromium induced congenital abnormalities in chick embryos. J Appl Toxicol 18(3):167–171

    Article  Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanism of different forms of chromium. Toxicology 180:5–22

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decreases heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  Google Scholar 

  • Castro RO, Trujillo MM, Bucio JL, Cervantes C, Dubrovsky J (2007) Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings. Plant Sci 172:684–691

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Google Scholar 

  • Chen B, Christie P, Li X (2001) A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42:158–192

    Google Scholar 

  • Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Chidambaram A, Sundaramoorthy P, Murugan A, Sankar Ganesh K, Baskaran L (2009) Chromium induced cytotoxicity in blackgram (Vigna mungo L.). Iran J Environ Health Sci Eng 6:17–22

    CAS  Google Scholar 

  • Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostinoa A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29

    Article  CAS  Google Scholar 

  • Codd R, Irwin JA, Lay PA (2003) Sialoglycoprotein and carbohydrate complexes in chromium toxicity. Curr Opi Chem Biol 17(2):213–219

    Article  Google Scholar 

  • Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L.cv. Azad) root mitochondria. Plant Cell Environ 25:687–690

    Article  CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Brit Mycol Soc 46:235–246

    Article  Google Scholar 

  • Gheju M, Balcu I, Ciopec M (2009) Analysis of hexavalent chromium uptake by plants in polluted soils. Ovidius Univ Ann Chem 20:12–131

    Google Scholar 

  • Ghosh M, Singh SPA (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose GM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gother V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  Google Scholar 

  • Hayat S, Gulshan Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma. doi:10.1007/s00709-011-0331-0

    Google Scholar 

  • Kalra A, Chandra M, Awasthi A, Singh AK, Khanuja SPS (2010) Natural compound enhancing growth and survival of rhizobial inoculants in vermicompost based formulation. Biol Fertil Soil 46:521–524

    Article  Google Scholar 

  • Kanga SY, Lee JU, Kim KW (2007) Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem Engin J 36:54–58

    Article  Google Scholar 

  • Karagiannidis N, Hadjisavva Zinoviadi S (1998) The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nutr Cycl Agroecos 52:1–7

    Article  Google Scholar 

  • Khan AG (2001) Relationship between chromium biomagnification accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int 26:417–423

    Article  CAS  Google Scholar 

  • Krishna RK, Philip L (2005) Bioremediation of Cr(VI) in contaminated soils. J Hazard Mater 121:109–117

    Article  CAS  Google Scholar 

  • Liu DH, Jaing WS, Li MX (1993) Effect of chromium on root growth and cell division of Allium cepa. Isr J Plant Sci 42:235–243

    Article  Google Scholar 

  • Losi ME, Frankenberger WT (1994) Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant. Water Air Soil Pollut 74:405–413

    CAS  Google Scholar 

  • Mabbett AN, Lloyd JR, Macaskie LE (2002) Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC29579. Biotechnol Bioeng 79(4):389–397

    Article  CAS  Google Scholar 

  • Mandiwana KL, Panichev N, Kataeva M, Siebert S (2007) The solubility of Cr(III) and Cr(VI) compounds in soil and their availability to plants. J Hazard Mat 147:540–545

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 11:495–501

    Article  Google Scholar 

  • Mishra S, Singh V, Srivastava S, Srivastava R, Srivastava MM, Dass S, Satsangi GP, Prakash S (1995) Studies on uptake of trivalent and hexavalent chromium by maize (Zea mays). Food Chem Toxicol 33:393–397

    Google Scholar 

  • Mohanty M, Patra HK (2011) Attenuation of chromium toxicity by bioremediation technology. Env Contam Toxicol 210:1–34

    CAS  Google Scholar 

  • Moya JL, Ros R, Picazo I (1995) Heavy-metal hormone interactions in rice plants: effects on growth, net photosynthesis, and carbohydrate distribution. J Plan Gro Regulat 14:61–67

    Article  CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) exposed to hexavalent chromium. Chemosphere 61:40–47

    Article  CAS  Google Scholar 

  • Papassiopi N, Kontoyianni A, Vaxevanidou K, Xenidis A (2009) Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques. Sci Tot Environ 407:925–936

    Article  CAS  Google Scholar 

  • Polti MA, Atjiána MC, Amorosoa MJ, Abatea CM (2011) Soil chromium bioremediation: synergic activity of actinobacteria and plants. Int Biodet Biodeg 65:1175–1181

    Article  CAS  Google Scholar 

  • Puzon GJ, Petersen JN, Roberts AG, Kramer DM, Xun L (2002) A bacterial flavin reductase system reduces chromates (III)–NAD+ complex. Biochem Biophy Res 294(1):76–81

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH (2005) Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Curr Microbiol 50:266–271

    Article  CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741–748

    Article  CAS  Google Scholar 

  • Rtidel H, Terytze K (1999) Determination of retractable chromium(VI) in soil using a photometric method. Chemosphere 39(4):697–708

    Article  Google Scholar 

  • Salunkhe PB, Dhakephalkar PK, Paknikar KM (1998) Bioremediation of hexavalent chromium in soil microcosms. Biotechnol Lett 20:749–751

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:735–753

    Article  Google Scholar 

  • Singh R, Paramaeswarn TN, Prakasa Rao EVS, Puttanna K, Kalra A, Srinivas KVNS, Bagyaraj DJ, Divya S (2009) Effect of arbuscular mycorrhizal fungi and Pseudomonas fluorescens on root-rot/wilt, growth and yield of Coleus forskohlii. Biocontrol Sci Technol 19:835–841

    Google Scholar 

  • Singh R, Divya S, Awasthi A, Kalra A (2012a) Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth. World J Microbiol Biotechnol 28:323–333

    Article  Google Scholar 

  • Singh R, Kalra A, Ravish BS, Divya S, Paramaeswarn TN, Srinivas KVNS, Bagyaraj DJ (2012b) Effect of potential bioinoculants and organic manures on root-rot and wilt, growth, yield and quality of organically grown Coleus forskohlii in semiarid tropical region of Bangalore (India). Plant Pathol 61:700–708

    Article  Google Scholar 

  • Singh R, Singh R, Soni SK, Patel RP, Kalra A (2013a) Technology for improving essential oil yield of Ocimum basilicum L. (sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Ind Crops Prod 45:335–342

    Article  CAS  Google Scholar 

  • Singh R, Singh R, Soni SK, Singh SP, Chauhan UK, Kalra A (2013b) Vermicompost from biodegraded distillation waste improves soil properties and essential oil yield of Pogostemon cablin (patchouli) Benth. Appl Soil Ecol 70:48–56

    Article  Google Scholar 

  • Singh R, Soni SK, Awasthi A, Kalra A (2012c) Evaluation of vermicompost doses for management of root-rot disease complex in Coleus forskohlii under organic field conditions. Aust Plant Pathol 41(4):397–403

    Article  Google Scholar 

  • Singh R, Soni SK, Kalra A (2013c) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    Article  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Singh M, Kalra A (2013) In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ Sci Pollut Res 20(3):1661–1674

    Article  CAS  Google Scholar 

  • Tappero R, Peltier E, Gra¨fe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    Article  CAS  Google Scholar 

  • Vivas A, Barea JM, Biró B, Azcón R (2006) Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J Appl Microbiol 100:587–598

    Article  CAS  Google Scholar 

  • Vivas A, Vörös I, Biró B, Campos E, Barea JM, Azcón R (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    Article  CAS  Google Scholar 

  • Vivas A, Barea JM, Azcón R (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266

    Article  CAS  Google Scholar 

  • Wise SS, Elmore LW, Holt SE, Little JE, PG A n, Bryant BH, Pierce WSJ (2004) Telomerase mediated lifespan extension of human bronchial cells does not affect hexavalent chromium induced cytotoxicity or genotoxicity. Mol Cell Biochem 255(1–2):103–112

    Article  CAS  Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the responses of plant metals. In: Lange A et al (eds) Encyclop plant physiol. Vol.12 C. Springer, Berlin, pp 245–300

    Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zhu YG, Christie P, Scott Laidlaw A (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India, for providing necessary facilities and encouragement during the course of investigation and the Indian Council of Medical Research (ICMR), New Delhi, India, for providing financial support to SKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kalra.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soni, S.K., Singh, R., Awasthi, A. et al. A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environ Sci Pollut Res 21, 1971–1979 (2014). https://doi.org/10.1007/s11356-013-2098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2098-7

Keywords

Navigation