Skip to main content

Advertisement

Log in

Trichoderma for climate resilient agriculture

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altomare C, Norvell WW, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    CAS  Google Scholar 

  • Anil K, Lakshmi T (2010) Phosphate solubilisation potential and phosphate activity of rhizospheric Trichoderma spp. Braz J Microbiol 41:787–795

    Article  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH et al (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  CAS  Google Scholar 

  • Baker SE, Perrone G, Richardson NM, Gallo A, Kubicek CP (2012) Phylogenetic analysis and evolution of polyketide synthase-encoding genes in Trichoderma. Microbiology 158:147–154

    Article  CAS  Google Scholar 

  • Barakat R (2008) The effect of Trichoderma harzianum in combination with organic amendment on soil suppressiveness to Rhizoctonia solani. Phytopathol Mediterr 47:11–19

    Google Scholar 

  • Baranski R, Klocke E (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:513–521

    Article  CAS  Google Scholar 

  • Barlow KM, Christy BP, O’Leary GJ, Riffkin PA, Nuttall JG (2015) Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res 171:109–119

    Article  Google Scholar 

  • Baroncelli R, Piaggeschi G, Fiorini L, Bertolini E, Zapparata A et al (2015) Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. Genome Announc 3:e00647–15

    Article  Google Scholar 

  • Baroncelli R, Zapparata A, Piaggeschi G, Sarrocco S, Vannacci G (2016) Draft whole-genome sequence of Trichoderma gamsii T6085, a promising biocontrol agent of Fusarium head blight on wheat. Genome Announc 4:e01747–15

    Article  Google Scholar 

  • Barrow JR, Lucero ME, Reyes-Vera I, Havstad K (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:69–93

    Article  Google Scholar 

  • Batta YA (2004) Effect of treatment with Trichoderma harzianum Rifai formulated in invert emulsion on postharvest decay of apple blue mold. Int J Food Microbiol 96:281–288

    Article  CAS  Google Scholar 

  • Bebber DP (2015) Range-expanding pests and pathogens in a warming world. Annu Rev Phytopathol 53:335–356

    Article  CAS  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27(3):411–424. doi:10.1007/s00299-007-0474-9

    Article  CAS  Google Scholar 

  • Bian R, Cheng K, Zheng J, Liu X, Liu Y et al (2015) Does metal pollution matter with C retention by rice soil? Sci Rep 5: Article number 13233. doi:10.1038/srep13233

  • Błaszczyk L, Siwulski M, Sobieralski K, Lisiecka J, Jędryczka M (2014) Trichoderma spp.—application and prospects for use in organic farming and industry. J Plant Prot Res 54:309–317

    Article  Google Scholar 

  • Bolar JP, Norelli JL, Wong KW, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    Article  CAS  Google Scholar 

  • Bolar JP, Norelli J, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma harzianum against the pathogenic fungus Venturia inaequalis in transgenic plants. Transgenic Res 10:533–543

    Article  CAS  Google Scholar 

  • Bonilla N, Gutiérrez-Barranquero JA, de Vicente A, Cazorla FM (2012) Enhancing soil quality and plant health through suppressive organic amendments. Diversity 4:475–491

    Article  Google Scholar 

  • Brants A, Earle ED (2001) Transgenic tobacco cell cultures expressing a Trichoderma hazianum endochitinase gene release the enzyme into the medium. Plant Cell Rep 20:73–78

    Article  CAS  Google Scholar 

  • Brookes G, Barfoot P (2012) Global impact of biotech crops-Environmental effects, 1996–2010. GM Crops and Food 3:129–137

    Article  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    Article  CAS  Google Scholar 

  • Brotman Y, Landau U, Pninic S, Lisec J, Balazadeh S et al (2012) The LysM receptor-like kinase LysMRLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants. Mol Plant 5:1113–1124

    Article  CAS  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T et al (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9:e1003221

    Article  CAS  Google Scholar 

  • Brouder SM, Volenec JJ (2008) Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant 133:705–724

    Article  CAS  Google Scholar 

  • Butterbach-Bah K, Baggs EM, Dannenmann M, Kiese R (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci 368(1621):20130122. doi:10.1098/rstb.2013.0122

    Article  CAS  Google Scholar 

  • Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113

    Article  CAS  Google Scholar 

  • Cai F, Chen W, Wei Z, Pang G, Li R, Ran W, Shen Q (2015) Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to growth, nutrient availability and soil microflora. Plant Soil 388:337–350

    Article  CAS  Google Scholar 

  • Calo L, García I, Gotor C, Romero LC (2006) Leaf hairs influence phytopathogenic fungus infection and conferred an increased resistance when expressing a Trichoderma 1,3-glucanase. J Exp Bot 56:3911–3920

    Article  CAS  Google Scholar 

  • Chacon MR, Rodriguez-Galan O, Beritez T, Sousa S, Rey M, Llobell A, Delgado-Jarana J (2007) Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. Int Microbiol 10:19–27

    CAS  Google Scholar 

  • Chakraborty S, Luck J, Hollaway G, Fitzgerald G, White N (2011) Rust-proofing wheat for a changing climate. Euphytica 179:19–32

    Article  Google Scholar 

  • Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in presence of biological control agent Trichoderma harzianum. Plant Dis 70:145–148

    Article  Google Scholar 

  • Chen YP, Liu Q, Liu YJ, Jia FA, He XH (2014) Responses of soil microbial activity to cadmium pollution and elevated CO2. Sci Rep 4:4287

    Article  CAS  Google Scholar 

  • Chepsergon J, Mwamburi L, Kassim MK (2014) Mechanism of drought tolerance in plants using Trichoderma spp. IJSR 3:1592–1595

    Google Scholar 

  • Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA et al (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6(8):130

    Article  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Ann Rev Phytopathol 37:399–426

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:fiw036

    Article  CAS  Google Scholar 

  • Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28:97–125

    Article  Google Scholar 

  • Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA et al (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676. doi:10.1038/nature12670

    Article  CAS  Google Scholar 

  • Distefano G, La Malfa S, Vitale A, Lorito M, Deng Z (2008) Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 17:873–879

    Article  CAS  Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011a) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS ONE 6:e16360

    Article  CAS  Google Scholar 

  • Dixit P, Mukherjee PK, Sherkhane PD, Kale SP, Eapen S (2011b) Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. J Hazard Mater 192:270–276

    CAS  Google Scholar 

  • Djonovic´ S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    Article  CAS  Google Scholar 

  • Dolatabadi KH, Goltapeh EM, Varma A, Rohani N (2011) In-vitro evaluation of arbuscular mycorrhizal-like fungi and Trichoderma species against soil borne pathogens. J Agric Technol 7:73–84

    Google Scholar 

  • Domínguez S, Rubio MB, Cardoza RE, Gutiérrez S, Nicolás C et al (2016) Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans Acetamidase amdS gene. Front Microbiol 7:1182

    Article  Google Scholar 

  • Donoso EP, Bustamante RO, Carú M, Niemeyer HM (2008) Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Appl Environ Microbiol 74:1412–1417

    Article  CAS  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim D-J et al (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    Article  CAS  Google Scholar 

  • Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

    Article  CAS  Google Scholar 

  • Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathology 93:1496–1504

    Article  CAS  Google Scholar 

  • Finzi AC, Austin AT, Cleland EE et al (2011) Coupled biochemical cycles: responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front Ecol Environ 9:61–67

    Article  Google Scholar 

  • Fischer RA, Byerlee D, Edmeades GO (2014) Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research, Canberra, p 634

    Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978

    Article  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  Google Scholar 

  • Gaderer R, Lamdan NL, Frischmann A, Sulyok M et al (2015) Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiol 15:2

    Article  CAS  Google Scholar 

  • Gale WJ, Cambardella CA, Bailey TB (2000) Root-derived carbon and the formation and stabilization of aggregates. Soil Sci Soc Am J 64:201–207

    Article  CAS  Google Scholar 

  • Gautam HR, Bhardwaj ML, Kumar R (2013) Climate change and its impact on plant diseases. Curr Sci 105(12):1685–1691

    Google Scholar 

  • Gentile A, Deng Z, La Malfa S, Distefano G et al (2007) Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed 126:146–151

    Article  CAS  Google Scholar 

  • Gill SS, Gill R, Anjum NA, Tuteja N (2013) Transgenic approaches for abiotic stress tolerance in crop plants. Plant Stress 7:73–83

    Google Scholar 

  • Gomes EV, Nascimento CM, Graciano PR, Azevedo R R, et al. (2015) The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Sci Rep 5: Article number 17998. doi:10.1038/srep17998

  • Gomiero T (2016) Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability 8:281

    Article  Google Scholar 

  • Gravel V, Antoun V, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indoleacetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085

    Article  CAS  Google Scholar 

  • Guler NS, Pehlivan N, Karaoglu SA, Guzel S, Bozdeveci A (2016) Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant 38:132

    Article  CAS  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  Google Scholar 

  • Harman GE (2011) Multifunctional fungal plant synbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684. doi:10.3390/ijms14059643

    Article  CAS  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA et al (2014) Alleviation of abiotic stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. J Plant Interact 9:857–868

    Article  CAS  Google Scholar 

  • Heraux FMG, Hallett SG, Ragothama KG, Weller SC (2005) Composted chicken manure as a medium for the production and delivery of Trichoderma virens for weed control. Hort Sci 40:1394–1397

    Google Scholar 

  • Hermosa R, Botella L, Keck E, Jiménez JA, MonteroBarrientos M et al (2011) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 168:1295–1302

    Article  CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  Google Scholar 

  • Hjeljord LG, Stensvand A, Tronsmo A (2000) Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries. Biol Control 19:146–160

    Article  Google Scholar 

  • Hoeppner SS, Dukes JS (2012) Interactive responses of old-field plant growth and composition to warming and precipitation. Global Change Biol 18:1754–1768

    Article  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases; the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  CAS  Google Scholar 

  • Idowu OO, Oni AC, Salami AO (2016) The interactive effects of three Trichoderma species and damping-off causative pathogen Pythium aphanidermatum on emergence indices, infection incidence and growth performance of sweet pepper. Int J Recent Sci Res 7:10339–10347

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. 32, Cambridge University Press, 2014

  • Janarthanam L (2013) Bioprotectant with multifunctional microorganisms: a new dimension in plant protection. J Biopestic 6:219–230

    Google Scholar 

  • Jiao F, Shi XR, Han FP, Yuan ZY (2016) Increasing aridity, temperature and soil pH induce soil C–N–P imbalance in grasslands. Sci Rep 6:19601

    Article  CAS  Google Scholar 

  • Kamble S, Mukherjee PK, Eapen S (2016) Expression of an endochitinase gene from Trichoderma virens confers enhanced tolerance to Alternaria blight in transgenic Brassica juncea (L.) czern and coss lines. Physiol Mol Biol Plants 22:69–76

    Article  CAS  Google Scholar 

  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D (2008) Transient elevation of carbon dioxide modifies the microbial community composition in a semi–arid grassland. Soil Biol Biochem 40:162–171

    Article  CAS  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security-a review. Prog Nat Sci 19:1665–1674

    Article  Google Scholar 

  • Kannan P, Arunachalam P, Govindaraj M (2015) Implications and ways to enhance nutrient use efficiency under changing climate. In: Roychowdhury R Crop improvement in the era of climate change. I K International Publishing House Pvt. Ltd, New Delhi, pp. 115–142. ISBN 978-9382332619

  • Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 4:51–73

    Article  Google Scholar 

  • Kashyap PL, Sanghera GS, Wani SH, Shafi W et al (2011) Genes of microorganisms: Paving way to tailor next generation fungal disease resistant crop plants. Not Sci Biol 3:147–157

    CAS  Google Scholar 

  • Kashyap PL, Kumar S, Gurjar MS, Singh A, Singh N, Srivastava AK, Bag TK (2013) Phytopathogenomics in plant disease management: a paradigm shift. In: Prasad D, Ray DP (eds) Biotechnological approaches in crop protection, Biotech Book, New Delhi, pp. 241–262

    Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7–13

    Article  CAS  Google Scholar 

  • Khan MY, Haque MM, Molla AH, Rahman MM, Alam MZ (2016) Antioxidant compounds and minerals in tomatoes by Trichoderma enriched biofertilizer and their relationship with the soil environments. J Integr Agric 15:60345–60347

    Google Scholar 

  • Khidir HH, Eudy DM, Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2008) A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland. J Arid Environ 74:35–42

    Article  Google Scholar 

  • Kogel KH, Voll LM, Schäfer P, Jansen C, Wu Y et al (2010) Transcriptome and metabolome profiling of field grown transgenic barley lack induced differences but show cultivar-specific variances. Proc Natl Acad Sci USA 107:6198–6203

    Article  CAS  Google Scholar 

  • Kosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J Biotechnol 10:3659–3670

    CAS  Google Scholar 

  • Kotasthane A, Agrawal T, Kushwah R, Rahatkar OV (2015) In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. Eur J Plant Pathol 141:523–543

    Article  CAS  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  Google Scholar 

  • Kumar R, Das AJ (2014) Climate change and its impact on land degradation: imperative need to focus. J Climatol Weather Forecast 2:108. doi:10.4172/2332-2594.1000108

    Google Scholar 

  • Kumar V, Parkhi V, Kenerley CM, Rathore KS (2009) Defense related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta 230:277–291

    Article  CAS  Google Scholar 

  • Kumar S, Thakur M, Rani A (2014) Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res 9(53):3838–3852.

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lam SK, Chen D, Norton R, Armstrong RD (2012) Does phosphorus stimulate the effect of elevated CO2 on growth and symbiotic nitrogen fixation of grain and pasture legumes? Crop Pasture Sci 63:53–62

    Article  CAS  Google Scholar 

  • Lee K, Pan JJ, May G (2009) Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol Lett 299:31–37

    Article  CAS  Google Scholar 

  • Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V et al (2015) Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7:988–1027

    Article  CAS  Google Scholar 

  • Li R-X, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE 10:e0130081

    Article  CAS  Google Scholar 

  • Lin D, Xia J, Wan S (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–198

    Article  Google Scholar 

  • Liu M, Sun ZX, Zhu J, Xu T, Harman GE, Lorito M (2004) Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. J Zhejiang Univ Sci 5:133–136

    Article  CAS  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  CAS  Google Scholar 

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123

    Article  Google Scholar 

  • Lorito M, Woo SL, Fernandez Garcia I, Colucci G et al (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: From ‘omics to the field. Ann Rev Phytopathol 48:395–417

    Article  CAS  Google Scholar 

  • Luo Y, Su B, Currie WS, Finzi A, Hartwig U, Hungate B et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY et al (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Micro Lett 313:120–126

    Article  CAS  Google Scholar 

  • Maeda K, Spor A, Edel-Hermann V, Heraud C et al (2015) N2O production, a widespread trait in fungi. Sci Rep 5:9697. doi:10.1038/srep09697

    Article  CAS  Google Scholar 

  • Maischak H, Zimmermann MR, Felle HH, Boland W et al (2010) Alamethicin-induced electrical long distance signaling in plants. Plant Signal Behav 5:988–990

    Article  Google Scholar 

  • Malmierca MG, McCormick SP, Cardoza RE, Alexander NJ, Monte E, Gutierrez S (2015) Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi. Environ Microbiol 17:2628–2646

    Article  CAS  Google Scholar 

  • Mandal AK, Kashyap PL, Gurjar MS, Kumar S, Sanghera GS (2012) Recent biotechnological achievements in plant disease management. In: Banik S (ed) Current concepts in crop protection. Stadium Press (India) Pvt Ltd, New Delhi, pp 77–129

    Google Scholar 

  • Mann SK, Kashyap PL, Sanghera GS, Singh G, Singh S (2008) RNA interference: an eco-friendly tool for plant disease management. Transgenic Plant J 2:110–126

    Google Scholar 

  • Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou J-C (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127:334–344

    Article  CAS  Google Scholar 

  • Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206. doi:10.3389/fpls.2013.00206

    Article  Google Scholar 

  • Martínez-Medina A, Alguacil MDM, Pascual JA, Wees SCMV (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815

    Article  CAS  Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  CAS  Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant Microbe Interact 25:1264–1271

    Article  CAS  Google Scholar 

  • Mbarki S, Cerdà A, Brestic M, Mahendra R et al (2016) Vineyard compost supplemented with Trichoderma harzianum T78 improve saline soil quality. Land Degrad Dev. doi:10.1002/ldr.2554

    Google Scholar 

  • McGrath JM, Lobell DB (2013) Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant Cell Environ 36:697–705

    Article  CAS  Google Scholar 

  • McKenzie FC, Williams J (2015) Sustainable food production: constraints, challenges and choices by 2050. Food Secur 7:221–233

    Article  Google Scholar 

  • Mercado JA, Martín-Pizarro CL, Pascual MA, Quesada F et al (2007) Evaluation of tolerance to Colletotrichum acutatum in strawberry plants transformed with Trichoderma derived-genes. Acta Hortic 738:383–388

    Article  CAS  Google Scholar 

  • Mercado JA, Barceló M, Pliego C et al (2015) Expression of the β-1,3-glucanase gene bgn13.1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth. Transgenic Res 24:979–989

    Article  CAS  Google Scholar 

  • Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H et al (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 4:5687–5694

    Article  CAS  Google Scholar 

  • Mohammadi K, Ghalavand A, Aghaalikhani M (2010) Study the efficacies of green manure application as chickpea pre plant. World Acad Sci Eng Technol 4:10–20

    Google Scholar 

  • Molla AH, Haque MM, Haque MA, Ilias GNM (2012) Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric Res 1(3):265–272

    Article  CAS  Google Scholar 

  • Monte E (2001) Understanding Trichoderma, between biotechnology and microbial ecology. Int Microbiol 4:1–4

    CAS  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Nicolas C, Cardoza RE, Gutierrez S et al (2008) Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet Biol 45:1506–1513

    Article  CAS  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolás C, Monte E (2010) Transgenic expression of the Trichoderma harzianum HSP70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

    Article  CAS  Google Scholar 

  • Mora A, Earle ED (2001) Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Mol Breed 8:1–9

    Article  CAS  Google Scholar 

  • Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    Article  CAS  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma-plant-pathogen interactions: Advances in genetics of biological control. Indian J Microbiol 52:522–529

    Article  Google Scholar 

  • Naithani S (2016) Plants and global climate change: a need for sustainable agriculture. Curr Plant Biol 6:1. doi:10.1016/j.cpb.2016.10.002

    Article  Google Scholar 

  • Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67:149–156

    Article  Google Scholar 

  • Newbery F, Qi A, Fitt BDL (2016) Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Curr Opin Plant Biol 32:101–109

    Article  Google Scholar 

  • Nicolás C, Hermosa R, Rubio B, Mukherjee PK, Monte E (2014) Trichoderma genes in plants for stress tolerance- status and prospects. Plant Sci 228:71–78

    Article  CAS  Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soilborne plant diseases with composts: a review. Biocontrol Sci Technol 15:3–20

    Article  Google Scholar 

  • Noël A, Levasseur C, Le VQ, Séguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplarwith a Trichoderma harzianum endochitinase gene. Physiol Mol Plant Pathol 67:92–99

    Article  CAS  Google Scholar 

  • Norton R (2014) Combating climate change through improved agronomic practices and input-use efficiency. J Crop Improvement 28:575–618. doi:10.1080/15427528.2014.924331

    Article  Google Scholar 

  • O‘Kennedy MM, Crampton BG, Lorito M, Chakauya E, Breese WA, Burger JT, Botha FC (2011) Expression of β -1,3-glucanase from a biocontrol fungus in transgenic pearl millet. S Afr J Bot 77:335–345

    Article  CAS  Google Scholar 

  • Oros G, Naár Z (2017) Mycofungicide: Trichoderma based preparation for foliar applications. Am J Plant Sci 8(02):113–125

    Article  Google Scholar 

  • Ortiz R, Jarvis A, Fox P, Aggarwal PK, Campbell BM. (2014) Plant genetic engineering, climate change and food security. CCAFS working paper no. 72. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Available online at: http://www.ccafs.cgiar.org

  • Pautasso M, Döring TF, Garbelotto M et al (2012) Impacts of climate change on plant diseases-opinions and trends. Eur J Plant Pathol 133:295–313

    Article  Google Scholar 

  • Perazzoli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, Delledonne M, Pertot I (2012) Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genom 13:660

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM et al (2014) Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol 52:347–375

    Article  CAS  Google Scholar 

  • Pilbeam DJ (2015) Breeding crops for improved mineral nutrition under climate change conditions. J Exp Bot 66:3511–3521

    Article  CAS  Google Scholar 

  • Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27:14–22

    Article  CAS  Google Scholar 

  • Pritchard SG (2011) Soil organisms and global climate change. Plant Pathol 60:82–89

    Article  Google Scholar 

  • Rai S, Kashyap PL, Kumar S et al (2016a) Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. SpringerPlus 5:1939. doi:10.1186/s40064-016-3657-4.

    Article  Google Scholar 

  • Rai S, Kashyap PL, Kumar S et al (2016b) Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment. World J Microbiol Biotechnol 32:8

    Article  CAS  Google Scholar 

  • Rajkumar M, Prasad MN, Swaminathan S, Freitas H (2013) Climate change driven plant-metal-microbe interactions. Environ Int 53:74–86

    Article  CAS  Google Scholar 

  • Rana IA, Loerz H, Schaefer W, Becker D (2012) Overexpression of chitinase and chitosanase genes from Trichoderma harzianum under constitutive and inducible promoters in order to increase disease resistance in wheat (Triticum aestivum L). Mol Plant Breed 3:37–49

    Google Scholar 

  • Rawat L, Singh Y, Shukla N et al (2011) Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil 347:387. doi:10.1007/s11104-011-0858-z

    Article  CAS  Google Scholar 

  • Rippa S, Eid M, Formaggio F, Toniolo C, Béven L (2010) Hypersensitive-like response to the pore-former peptaibol alamethicin in Arabidopsis thaliana. Chem Bio Chem 11:2042–2049

    Article  CAS  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  Google Scholar 

  • Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A (2002) Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32:1049–1055

    Article  CAS  Google Scholar 

  • Rubio MB, Quijada NM, Pérez E, Domínguez S et al (2014) Identifying beneficial qualities of Trichoderma parareesei for plants. Appl Environ Microbiol 80:1864–1873

    Article  CAS  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake & growth yield parameters of chickpea (Cicer arietinum L.). Can J Microbiol 51:217–226

    Article  CAS  Google Scholar 

  • Ruocco M, Lanzuise S, Lombardi N, Woo SL., Francesco Vinale et al (2015) Multiple roles and effects of a novel Trichoderma hydrophobin. Mol Plant-Microbe Interact 28:167–179

    Article  CAS  Google Scholar 

  • Saiprasad GVS, Mythili JB, Anand L, Suneetha C, Rashmi HJ, Naveena C, Ganeshan G (2009) Development of Trichoderma harzianum endochitinase gene construct conferring antifungal activity in transgenic tobacco. Indian J Biotechnol 8:199–206

    CAS  Google Scholar 

  • Samolski I, Rincon AM, Pinzón LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138

    Article  CAS  Google Scholar 

  • Sanghera GS, Kashyap PL, G Singh, da Silva JAT (2011a) Transgenics: fast track to plant stress amelioration. Transgenic Plant J 5(1):1–26

    Google Scholar 

  • Sanghera GS, Wani SH, Singh G, Kashyap PL, Singh NB (2011b) Designing crop plants for biotic stresses using transgenic approach. Vegetos 24:1–25

    Google Scholar 

  • Saravanakumar K, Arasu VS, Kathiresan K (2013) Effect of Trichoderma on soil phosphate solubilisation and growth improvement of Avicennia marina. Aquat Bot 104:101–105

    Article  CAS  Google Scholar 

  • Schäfer T, Hanke MV, Flachowsky HS, König A, Peil M et al (2012) Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple. Genet. Mol Biol 35:466–473

    Google Scholar 

  • Schiedek D, Sundelin B, Readman JW, Macdonald RW (2007) Interactions between climate change and contaminants. Mar Pollut Bull 54(12):1845–1856

    Article  CAS  Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469

    Article  CAS  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB et al (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66

    Article  CAS  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:789–799

    Article  CAS  Google Scholar 

  • Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359

    Article  CAS  Google Scholar 

  • Shah JM, Raghupathy V, Veluthambi K (2009) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31:239

    Article  CAS  Google Scholar 

  • Shah MR, Mukherjee PK, Eapen S (2010) Expression of a fungal endochitinase gene in transgenic tomato and tobacco results in enhanced tolerance to fungal pathogens. Physiol Mol Biol Plants 16:39–51

    Article  CAS  Google Scholar 

  • Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78

    Article  Google Scholar 

  • Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatments for sustainable agriculture-a review. J Appl Nat Sci 7(1):521–539

    Google Scholar 

  • Sharma S, Rai P, Rai S, Srivastava M et al (2017) Genomic revolution in crop disease diagnosis: a review. In: Singh SS (ed) Plants and microbes in an ever changing environment. Nova Science Publishers, Hauppauge, pp 257–293

  • Shoresh M, Harman GE (2008) The molecular basis of maize response to Trichoderma harzianum T22 inoculation: a proteomic approach. Plant Physiol 147:2147–2163

    Article  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  Google Scholar 

  • Silva R, Steindorff AS, Ulhoa CJ, Felix RC (2009) Involvement of G-alpha protein GNA3 in production of cell wall-degrading enzymes by Trichoderma reesei (Hypocrea jecorina) during mycoparasitism against Pythium ultimum. Biotechnol Lett 31:531–536

    Article  CAS  Google Scholar 

  • Singh M, Sharma OP (2012) Trichoderma- A savior microbe in the era of climate change. IJABR 2(4):784–786.

    Google Scholar 

  • Singh V, Singh PN, Yadav RL, Awasthi SK, Joshi BB, Singh RK, Lal RJ, Duttamajumder SK (2010) Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red root in sugarcane. J Hortic For 2:66–71

    Google Scholar 

  • Singh RK, Kumar DP, Singh P, Solanki MK, Srivastava S et al (2014) Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regul 73(1):91–101

    Article  CAS  Google Scholar 

  • Solanki MK, Singh N, Singh RK, Singh P, Srivastava AK et al (2011) Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica 39:471–481

    Article  CAS  Google Scholar 

  • Srivastava AK, Singh RN, Kumar S, Kashyap PL, Arora DK (2012) Growth promotion and management of Alternaria leaf spot in chilli by Trichoderma harzianum. Int J Innov Hort 2:158–163

    Google Scholar 

  • Srivastava M, Shahid M, Pandey S, Singh A, Kumar V et al (2014) Trichoderma genome to genomics: a review. J Data Min Genom Proteom 5:162

    Google Scholar 

  • St. Clair SP, Lynch JP (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  CAS  Google Scholar 

  • Studholme DJ, Harris B, Cocq KL, Winsbury R et al (2013) Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics. Front Plant Sci 4:258

    Article  Google Scholar 

  • Syakila A, Kroeze C (2011) The global nitrogen budget revisited. Greenh Gas Meas Manag 1:17–26. doi:10.3763/ghgmm.2010.0007

    Article  CAS  Google Scholar 

  • Toma Y, Higuchi T, Nagata O, Kato Y, Izumiya T, Oomori S, Ueno H (2017) Efflux of soil nitrous oxide from applied fertilizer containing organic materials in citrus unshiu field in Southwestern Japan. Agriculture 7:10. doi:10.3390/agriculture7020010

    Article  Google Scholar 

  • Tucci M, Ruocco M, Masi LD, Palma MD, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Article  CAS  Google Scholar 

  • Tyagi S, Singh R, Javeria S (2014) Effect of climate change on plant-microbe interaction: an overview. Eur J Mol Biotechnol 5:149–156

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14(2):e1002378. doi:10.1371/journal.pbio.1002378

    Article  CAS  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  • Vishnevetsky J, White TL Jr, Palmateer AJ, Flaishman M, Cohen Y, Elad Y, Velcheva M, Hanania U, Sahar N, Dgani O, Perl A (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20:61–72

    Article  CAS  Google Scholar 

  • Visser A, Kroes J, van Vliet MTH, Blenkinsop S, Fowler HJ, Broers HP (2012) Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment. J Contam Hydrol 127:47–64

    Article  CAS  Google Scholar 

  • Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258

    Article  CAS  Google Scholar 

  • Viterbo A, Harel M, Chet I (2004) Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Lett 238:151–158

    CAS  Google Scholar 

  • Viterbo M, Harel B, Horwitz A, Chet I, Mukherjee PK (2005) Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241–6246

    Article  CAS  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley CM (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746

    Article  CAS  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  Google Scholar 

  • Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: A significant fungus for agriculture and environment. Afr J Agric Res 11:1952–1965

    Google Scholar 

  • Walters DR, Bennett AE (2014) Microbial induction of resistance to pathogens. In: Walters DR, Newton AC, Gary D (eds) Induced resistance for plant defense: a sustainable approach to crop protection. Wiley, Lyon, pp 149–170

    Google Scholar 

  • Weber FA, Hofacker AF, Voegelin A, Kretzschmar R (2010) Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environ Sci Technol 44(1):116–122

    Article  CAS  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R et al (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Article  Google Scholar 

  • Xu S, Fu X, Ma S, Bai Z, Xiao R, Li Y, Zhuang G (2014) Mitigating nitrous oxide emissions from tea field soil using bioaugmentation with a Trichoderma viride biofertilizer. Sci World J 2014:793752. doi:10.1155/2014/793752

    Google Scholar 

  • Yadav RL, Shukla SK, Suman A et al (2009) Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions. Biol Fertil Soils 45:461

    Article  Google Scholar 

  • Yadav RC, Solanke AU, Kumar P, Pattanayak D, Yadav NR, Ananda Kumar P (2013) Genetic engineering for tolerance to climate change-related traits. In: Kole C (ed) Genomics and breeding for climate-resilient crops. Springer, Berlin, pp 285–330. doi:10.1007/978-3-642-37045-8_7

    Chapter  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid–mediated abiotic stress response in Arabidopsis. Plant Cell 20(6):1678–1692. doi:10.1105/tpc.107.054296

    Article  CAS  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  CAS  Google Scholar 

  • You J, Zhang J, Wu M, Yang L, Chen W, Li G (2016) Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biol Control 101:31–38

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2015) Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat Clim Chang 5:465–469. doi:10.1038/nclimate2549

    Article  CAS  Google Scholar 

  • Zanella MA, Rahmanian M, Perch LN, Callenius C, Rubio JL, Vuningoma F, Rist S, Mapfumo P (2015) Discussion: food security and sustainable food systems: the role of soil. Int Soil Water Conserv Res 3:154–159

    Article  Google Scholar 

  • Zeilinger S, Gruber S, Bansalb R, Mukherjee PK (2016) Secondary metabolism in Trichoderma-Chemistry meets genomics. Fungal Biol Rev 30:74–90

    Article  Google Scholar 

  • Zelicourt Ad, Colcombet J, Hirt H (2016) The role of MAPK modules and aba during abiotic stress signaling. Trends Plant Sci 21:677–685

    Article  CAS  Google Scholar 

  • Zhang F, Liu Z, Gulijimila M, Wang Y, Fan H, Wang Z (2016) Functional analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene of the biocontrol fungus Trichoderma asperellum ACCC30536. Can J Plant Sci 96:265–275

    Article  Google Scholar 

  • Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170:220–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Lal Kashyap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, P.L., Rai, P., Srivastava, A.K. et al. Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33, 155 (2017). https://doi.org/10.1007/s11274-017-2319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2319-1

Keywords

Navigation