Skip to main content
Log in

Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Tomato root rot caused by Rhizoctonia solani is a major soilborne disease resulting in significant yield loss. The culture filtrates of six isolates of Trichoderma/Hypocrea species were evaluated for in vitro production of hydrolytic enzymes. Results demonstrated that all the six isolates were able to produce chitinase, β-1, 3 glucanase and protease in the range of 76–235 μmol GlcNAc min-1 mg-1 protein, 31.90–37.72 nmol glucose min-1 mg-1 proteins and 63.05–86.22 μmol min-1 mg-1 proteins, respectively. Trichoderma/Hypocrea-based formulation(s) were prepared with chitin (1% v:v) and CMC (0.5% w:v) for root rot management in a greenhouse. Root dip application with bioformulation(s) resulted in a significant reduction of the root rot index. In addition, bioformulations increased plant growth attributing traits significantly relative to untreated control. Accumulation of total phenols, peroxidase, polyphenoloxidase and phenylalanine ammonia lyase increased in chitin-supplemented Trichoderma/Hypocrea formulation-treated plants challenged with R. solani. The results suggest that chitin-fortified bioformulation(s) could be an effective system to control root rot of tomato in an eco-compatible manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida, F. B. R., Cerqueira, F. M., Silva, R. N., Ulhoa, C. J., & Lima, A. L. (2007). Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnology Letters, 29, 1189–1193.

    Article  PubMed  CAS  Google Scholar 

  • Anitha, A., & Rabeeth, M. (2009). Control of Fusarium wilt of tomato by bioformulation of Streptomyces griseus in greenhouse condition. African Journal of Basic & Applied Sciences, 1, 9–14.

    Google Scholar 

  • Bade, M. L., & Wick, R. L. (1988). Protecting crops and wild life with chitin and chitosan. In H. G. Cutler (Ed.), Biologically active natural products (pp. 450–468). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Bell, A. A., Hubbard, J. C., Liu, L., Davis, R. M., & Subbarao, K. V. (1998). Effects of chitin and chitosan on the incidence and severity of Fusarium yellows in celery. Plant Disease, 82, 322–328.

    Article  CAS  Google Scholar 

  • Benhamou, N., & Theriault, G. (1992). Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f.sp. radicis-lycopersici. Physiological and Molecular Plant Pathology, 41, 33–52.

    Article  CAS  Google Scholar 

  • Boller, T., & Mauch, F. (1988). Colourimetric assay for chitinase. Methods in Enzymology, 161, 430–435.

    Article  CAS  Google Scholar 

  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149, 1579–1592.

    Article  PubMed  CAS  Google Scholar 

  • Cortes, C., Gutierrez, A., Olmedo, V., Inbar, J., Chet, I., & Estrella, A. H. (1998). The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Molecular Genetics and Genomics, 260, 218–225.

    CAS  Google Scholar 

  • De Souza, J. T., Bailey, B. A., Pomella, A. W. V., Erbe, E. F., Murphy, C. A., Bae, H., et al. (2008). Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biological Control, 46, 36–45.

    Article  Google Scholar 

  • Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G., & Nicholson, R. L. (1984). Phenylalanine ammonialyase and hydroxyl cinnamate: CoA lygase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiology and Plant Pathology, 25, 111–123.

    Article  CAS  Google Scholar 

  • Ellis, S. A., Baker, L., & Ottway, C. J. (1998). Chitin for control of pests and diseases of sugarbeet seedlings. Aspects of Applied Biology, 52, 109–114.

    Google Scholar 

  • Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London, UK: Sage Publications Ltd.

    Google Scholar 

  • Geremia, R. A., Goldman, G. H., Jacobs, D., Ardiles, W., Vila, S. B., Van Montagu, M., et al. (1993). Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Molecular Microbiology, 8, 603–613.

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt, R., Nuckles, E. M., & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiology and Molecular Plant Pathology, 20, 73–82.

    Article  CAS  Google Scholar 

  • Haran, S., Schikler, H., & Chet, I. (1995). New components of the chitinolytic system of Trichoderma harzianum. Mycological Research, 99, 441–446.

    Article  CAS  Google Scholar 

  • Harman, G., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, 4–10.

    Article  Google Scholar 

  • Jyotsana, Srivastava, A., Singh, R. P., Srivastava, A. K., Saxena, A. K., & Arora, D. K. (2008). Growth promotion and charcoal rot management in chickpea by Trichoderma harzianum. Journal of Plant Protection Research, 48, 557–568.

    Google Scholar 

  • Kashyap, P. L., & Dhiman, J. S. (2009). Induction of resistance in cauliflower against Alternaria blight using potassium and phosphonic salts. The Asian and Australasian Journal of Plant Science and Biotechnology, 3, 66–70.

    Google Scholar 

  • Kavino, M., Harish, S., Kumar, N., Saravanakumar, D., & Samiyappan, R. (2008). Induction of systemic resistance in banana (Musa spp.) against Banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHAO. European Journal of Plant Pathology, 120, 353–362.

    Article  CAS  Google Scholar 

  • Kishore, G. K., Pande, S., & Podile, A. R. (2005). Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defense-related enzymes. Journal of Phytopathology, 153, 169–173.

    Article  CAS  Google Scholar 

  • Kokalis-Burelle, N., Backman, P. A., Rodriguez-Kabana, R., & Ploper, D. L. (1991). Chitin as a foliar amendment to modify microbial ecology and control disease. Phytopathology, 81, 1152. abstr.

    Google Scholar 

  • Kolombet, L. V., Zhigletsova, S. K., Kosareva, N. I., Bystrova, E. V., Derbyshe, V. V., Krasnova, S. P., et al. (2008). Development of an extended shelf-life, liquid formulation of the biofungicide Trichoderma asperellum. World Journal of Microbiology and Biotechnology, 24, 123–131.

    Article  Google Scholar 

  • Kubicek, C. P., Mach, R. L., Peterbauer, C. K., & Lorito, M. (2001). Trichoderma: from genes to biocontrol. Journal of Plant Pathology, 83, 11–24.

    CAS  Google Scholar 

  • Loganathan, M., Sible, G. V., Maruthasalam, S., Saravanakumar, D., Raguchander, T., Sivakumar, M., et al. (2010). Trichoderma and chitin mixture based bioformulation for the management of head rot (Sclerotinia sclerotiorum (Lib.) deBary)-root-knot (Meloidogyne incognita Kofoid and White; Chitwood) complex diseases of cabbage. Archives of Phytopathology and Plant Protection, 43, 1011–1024.

    Article  CAS  Google Scholar 

  • Lorito, M., Harman, G. E., Hayes, C. K., Broadway, R. M., Tronsmo, A., Woo, S. L., et al. (1993). Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology, 83, 302–307.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journals of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Manjula, K., & Podile, A. R. (2001). Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Canadian Journal of Microbiology, 47, 618–625.

    PubMed  CAS  Google Scholar 

  • Mayer, A. M., Harel, E., & Shaul, R. B. (1965). Assay of catechol oxidase, a critical comparison of methods. Phytochemistry, 5, 783–789.

    Article  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Moataza, M. S. (2006). Destruction of Rhizoctonia solani and Phytophthora capsici causing tomato root-rot by Pseudomonas fluorescens lytic enzymes. Research Journal of Agriculture and Biological Sciences, 2, 274–281.

    Google Scholar 

  • Montealegre, J., Valderrama, L., Sánchez, S., Herrera, R., Besoain, X., & Pérez, L. M. (2010). Biological control of Rhizoctonia solani in tomatoes with Trichoderma harzianum mutants. Electronic Journal of Biotechnology, 13, 2. http://www.ejbiotechnology.info/content/vol13/issue2/full/6/.

  • Morsy, E. M., Abdel-Kawi, K. A., & Khalil, M. N. A. (2009). Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against Fusarium solani on tomato plants. Egyptian Journal of Phytopathology, 37, 47–57.

    Google Scholar 

  • Nandakumar, R., Viswanathan, R., Babu, S., Sheela, J., Raguchander, T., & Samiyappan, R. (2001). A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol, 46, 493–510.

    Article  Google Scholar 

  • Pan, S. Q., Ye, X. S., & Kuc, J. (1991). Association of β-1, 3-glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco induced by stem injection with or leaf inoculation with tobacco mosaic virus. Physiology and Molecular Plant Pathology, 39, 25–39.

    Article  CAS  Google Scholar 

  • Radjacommare, R., Venkatesan, S., & Samiyappan, R. (2010). Biological control of phytopathogenic fungi of vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens. Archives of Phytopathology and Plant Protection, 43, 1–17.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Lee, K. J., & Freitas, H. (2008). Effects of chitin and salicylic acid on biological control activity of Pseudomonas species against damping off of pepper. South African Journal of Botany, 74, 268–273.

    CAS  Google Scholar 

  • Sahebani, N., & Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry, 40, 2016–2020.

    Article  CAS  Google Scholar 

  • Sandhya, C., Sumantha, A., Szakacs, G., & Pandey, A. (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry, 40, 2689–2694.

    Article  CAS  Google Scholar 

  • Senthilraja, G., Anand, T., Durairaj, C., Kennedy, J. S., Suresh, S., Raguchander, T., et al. (2010). A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizobacteria, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol Science and Technology, 20, 449–464.

    Article  Google Scholar 

  • Sid Ahmed, A., Ezziyyani, M., Pérez Sánchez, C., & Candela, M. E. (2003). Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. European Journal of Plant Pathology, 109, 633–637.

    Article  CAS  Google Scholar 

  • Sultana, V., Ehteshamul-Haque, S., Ara, J., Qasim, R., & Ghaffar, A. (2000). Effect of crustacean chitin on the efficacy of plant growth promoting bacteria in the control of root infecting fungi of sunflower and chickpea. Acta Agrobotanica, 53, 5–12.

    Google Scholar 

  • Yu, T., Wang, L., Yin, Y., Wang, Y., & Zheng, X. (2008). Effect of chitin on the antagonistic activity of Cryptococcus aurentii against Penicillium expansum in pear fruit. International Journal of Food Microbiology, 122, 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Zieslin, N., & Ben-Zaken, R. (1993). Peroxidase activity and presence of phenolic substances in peduncle of rose flower. Plant Physiology and Biochemistry, 31, 333–339.

    CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the Indian Council of Agriculture Research (ICAR) by a network project “Application of Microorganisms in Agriculture and Allied Sectors” (AMAAS). The help of the culture collection unit of NBAIM is highly appreciated for providing cultures for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip K. Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanki, M.K., Singh, N., Singh, R.K. et al. Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica 39, 471–481 (2011). https://doi.org/10.1007/s12600-011-0188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-011-0188-y

Keywords

Navigation