Skip to main content

Advertisement

Log in

Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, Ed 2. Academic Press, New York

    Google Scholar 

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Albacete A, Ghanem ME, Dodd IC, Pérez-Alfocea F (2010) Principal component analysis of hormone profiling data suggests an important role for cytokinins in regulating leaf growth and senescence of salinized tomato. Plant Signal Behav 5:45–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alfano G, Ivey MLL, Cakir C, Bos JIB, Miller SA, Madden LV, Kamoun S, Hoitink HAJ (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–37

    Article  CAS  PubMed  Google Scholar 

  • Anees M, Tronsmo A, Edel-Hermann V, Hjeljord LG, Héraud C, Steinberg C (2010) Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol 114:691–701

    Article  PubMed  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño TM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Roberts DP, Lim H, Strem MD, Park S, Ryu C, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact 24:336–351

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Chet I (1996) Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: ultrastructural and cytochemical aspects of the interaction. Phytopathology 86:405–416

    Article  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Berg G (2009) Plantmicrobe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agricultura. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Blaya J, López-Mondéjar R, Lloret E, Pascual JA, Ros M (2013) Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt. Pestic Biochem Phys 107:112–119

    Article  CAS  Google Scholar 

  • Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158:139–146

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Mohan Kumar SP, Lakshmi MJ, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 6:109–117

    Article  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 8:314–325

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal- and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea. Plant Signal Behav 6:1554–1563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

    Article  PubMed  Google Scholar 

  • Donzelli BGG, Harman GE (2001) Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl Environ Microbiol 67:5643–5647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elad Y, Chet I, Boyle P, Henis Y (1983) Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii – scanning electron microscopy. Phytopathology 73:85–88

    Article  Google Scholar 

  • Etheridge N, Hall BP, Schaller GE (2006) Progress report: ethylene signaling and responses. Planta 223:387–39

    Article  CAS  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Ncl Acid S 41:95–98

    CAS  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol. Changes perceptions derived from research on Trichoderma harzianum T22. Plant Dis 84:377–393

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species: opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Björkman T, Ondik K, Shoresh M (2008) Changing paradigms on the mode of action and uses of Trichoderma spp. for biocontrol. Outlook Pest Manag 19:24–29

    Article  Google Scholar 

  • Hermosa R, Rubio MB, Cardoza RE, Nicolás C, Monte E, Gutiérrez S (2013) The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol 16:69–80

    CAS  PubMed  Google Scholar 

  • Jung SC, Martínez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–64

    Article  CAS  PubMed  Google Scholar 

  • Linkies A, Müller K, Morris K, Turečková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • López-Mondéjar R, Ros M, Pascual JA (2011) Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol Control 56:59–66

    Article  Google Scholar 

  • Lorito M, Woo LS, Harman GE, Monte E (2010) Translational research on Trichoderma: from’omics to the field. Annu Rev Phytopathol 48:395–417

    Article  CAS  PubMed  Google Scholar 

  • Marra R, Ambosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turrà D, Fogliano V, Scala F, Lorito M (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens using a proteome approach. Curr Genet 50:307–21

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Medina A, Pascual JA, Lloret E, Roldán A (2009a) Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum and their effects on Fusarium wilt in melon plants grown in seedlings nurseries. J Sci Food Agric 89:1843–1850

    Article  Google Scholar 

  • Martínez-Medina A, Roldán A, Pascual JA (2009b) Performance of a Trichoderma harzianum bentonite-vermiculite formulation against Fusarium wilt in seedling nursery melon plants. HortSci 44:2025–2027

    Google Scholar 

  • Martínez-Medina A, Roldán A, Albacete A, Pascual JA (2011) The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72:223–229

    Article  PubMed  Google Scholar 

  • Martínez-Medina A, Fernandez I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206

    Article  PubMed Central  PubMed  Google Scholar 

  • Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108

    Article  PubMed Central  PubMed  Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    CAS  PubMed  Google Scholar 

  • Monte E (2001) Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4:1–4

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma – a genomic perspective. Microbiology 158:35–45

    Article  CAS  PubMed  Google Scholar 

  • Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107:1203–1212

    Article  PubMed Central  PubMed  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci U S A 101:8039–8044

    Article  PubMed Central  PubMed  Google Scholar 

  • Ortiz A, Orduz S (2000) In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia 150:53–60

    Article  Google Scholar 

  • Papavizas GC, Lumsden RD (1982) Improved medium for isolation of Trichoderma spp. from soil. Plant Dis 66:1019–1020

    Article  Google Scholar 

  • Perazzolli M, Roatti B, Bozza E, Pertot I (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biol Control 58:74–82

    Article  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Ramot O, Cohen-Kubiec R, Chet I (2000) Regulation of β-1, 3-glucansase by carbon starvation in the mycoparasite Trichoderma harzianum. Mycol Res 104:415–42

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. new perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–52

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Simon S, Petrasek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Scopa A, Manfra M, De Nisco M, Tenore G, Troisi J, Di Fiori R, Novellino E (2011) Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus x P. canescens). Plant Growth Regul 65:421–425

    Article  CAS  Google Scholar 

  • Sofo A, Tataranni G, Xiloyannis C, Dichio B, Scopa A (2012) Direct effects of Trichoderma harzianum strain T-22 on micropropagated shoots of GiSeLa6 (Prunus cerasus x P. canescens) rootstock. Environ Exp Bot 76:33–38

    Article  CAS  Google Scholar 

  • Sriskandarajah S, Prinsen E, Motyka V, Dobrev PI, Serek M (2006) Regenerative Capacity of Cacti Schlumbergera and Rhipsalidopsis in Relation to Endogenous Phytohormones, Cytokinin Oxidase/Dehydrogenase, and Peroxidase Activities. J Plant Growth Regul 25:79–88

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei KS (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Article  CAS  PubMed  Google Scholar 

  • Van Wees SCM, Van Der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma plant- pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42:114–22

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–8

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–10492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185

    Article  CAS  PubMed  Google Scholar 

  • Ying-Hua S, Yu-Bo L, Xian-Sheng Z (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  Google Scholar 

  • Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M, Kubicek CP (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26:131–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Maria J. Pozo for useful comments on the manuscript. This research was supported by the CYCIT project AGL2010 21073 from the Spanish Ministry of Economy and Competitiveness, the Marie Curie Intra-European Fellowship FP7-PEOPLE-2011-IEF no. 301662 (to AMM) and VIDI grant no. 11281 of the Netherlands Organization of Scientific Research (to SCMW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saskia C.M. Van Wees.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Medina, A., Del Mar Alguacil, M., Pascual, J.A. et al. Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. J Chem Ecol 40, 804–815 (2014). https://doi.org/10.1007/s10886-014-0478-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0478-1

Keywords

Navigation