Skip to main content
Log in

Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

There are many reports on obtaining disease-resistance trait in plants by overexpressing genes from diverse organisms that encode chitinolytic enzymes. Current study represents an attempt to dissect the mechanism underlying the resistance to Rhizoctonia solani in cotton plants expressing an endochitinase gene from Trichoderma virens. Several assays were developed that provided a powerful demonstration of the disease protection obtained in the transgenic cotton plants. Transgene-dependent endochitinase activity was confirmed in various tissues and in the medium surrounding the roots of transformants. Biochemical and molecular analyses conducted on the transgenic plants showed rapid/greater induction of ROS, expression of several defense-related genes, and activation of some PR enzymes and the terpenoid pathway. Interestingly, even in the absence of a challenge from the pathogen, the basal activities of some of the defense-related genes and enzymes were higher in the endochitinase-expressing cotton plants. This elevated defensive state of the transformants may act synergistically with the potent, transgene-encoded endochitinase activity to confer a strong resistance to R. solani infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4-MU-β-(GlucNAc)3 :

4-Methylumbelliferyl-β-d-N,N′, N″-triacetylchitotrioside

4-MU-β-GlucNAc:

4-Methylumbelliferyl-N-acetyl-β-d-glucosaminide

CAD:

δ-Cadinene synthase

DAB:

3,3′-Diaminobenzidine

GLU:

Glucanase

H2DCF-DA:

2,7-Dichlorofluorescin diacetate

Hpi:

Hours post-inoculation

LOX:

Lipoxygenase

MS:

Murashige-Skoog

POD:

Peroxidase

PR1:

Pathogenesis-related protein 1

ROS:

Reactive oxygen species

WT:

Wild-type

References

  • Abeles FB, Forrence LE (1970) Temporal and hormonal control of beta-1, 3-glucanase in Phaseolus vulgaris L. Plant Physiol 45:395–400

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Baek JM, Howell CR, Kenerley CM (1999) The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet 35:41–50

    Article  PubMed  CAS  Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:513–521

    Article  CAS  Google Scholar 

  • Barber MS, Bertram RE, Ride JP (1989) Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant P 34:3–12

    Article  CAS  Google Scholar 

  • Bell AA (1967) Formation of gossypol in infected or chemically irritated tissues of gossypium species. Phytopathology 57:759–764

    CAS  Google Scholar 

  • Bell AA (1969) Phytoalexin production and Verticillium wilt resistance in cotton. Phytopathology 59:1119–1127

    CAS  Google Scholar 

  • Benhamou N, Asselin A (1989) Attempted localization of a substrate for chitinases in plant cells reveals abundant N-acetyl-d-glucosamine residues in secondary walls. Biol Cell 67:341–350

    Article  CAS  Google Scholar 

  • Benhamou N, Broglie K, Broglie R, Chet I (1993a) Antifungal effect of bean endochitinase on Rhizoctonia solani: ultrastructural changes and cytochemical aspects of chitin breakdown. Can J Microbiol 39:318–328

    Article  PubMed  CAS  Google Scholar 

  • Benhamou N, Broglie K, Chet I, Broglie R (1993b) Cytology of infection of 35S-bean chitinase transgenic canola plants by Rhizoctonia solani—cytochemical aspects of chitin breakdown in vivo. Plant J 4:295–305

    Article  CAS  Google Scholar 

  • Bergmeyer HU (1974) Methods of enzymatic analysis. Academic Press, New York, p 495

    Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong KW, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    Article  PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543

    Article  PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Carsolio C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 65:929–935

    PubMed  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  PubMed  CAS  Google Scholar 

  • Dana MD, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  CAS  Google Scholar 

  • De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433

    Article  PubMed  Google Scholar 

  • De Marco JL, Lima LHC, de Sousa MV, Felix CR (2000) A Trichoderma harzianum chitinase destroys the cell wall of the phytopathogen Crinipellis perniciosa, the causal agent of witches’ broom disease of cocoa. World J Microbiol Biotechnol 16:383–386

    Article  Google Scholar 

  • Delannoy E, Jalloul A, Assigbetse K, Marmey P, Geiger JP, Lherminier J, Daniel JF, Martinez C, Nicole M (2003) Activity of class III peroxidases in the defense of cotton to bacterial blight. Mol Plant Microbe Interact 16:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Distefano G, La Malfa S, Vitale A, Lorito M, Deng Z, Gentile A (2008) Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 17:873–879

    Article  PubMed  CAS  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    Article  PubMed  CAS  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells—induction of extracellular alkalinization, changes in protein-phosphorylation, and establishment of a refractory state. Plant J 4:307–316

    Article  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Fry SC, Aldington S, Hetherington PR, Aitken J (1993) Oligosaccharides as signals and substrates in the plant-cell wall. Plant Physiol 103:1–5

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Graham LS, Sticklen MB (1994) Plant chitinases. Can J Bot 72:1057–1083

    CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1995) Mechanisms in the biocontrol of Rhizoctonia solani-induced cotton seedling disease by Gliocladium virens antibiosis. Phytopathology 85:469–472

    Article  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  PubMed  CAS  Google Scholar 

  • Hunter RE, Halloin JM, Veech JA, Carter WW (1978) Terpenoid accumulation in hypocotyls of cotton seedlings during aging and after infection by Rhizoctonia solani. Phytopathology 68:347–350

    Article  CAS  Google Scholar 

  • Jalloul A, Montillet JL, Assigbetse K, Agnel JP, Delannoy E, Triantaphylides C, Daniel JF, Marmey P, Geiger JP, Nicole M (2002) Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenases during the hypersensitive reaction. Plant J 32:1–12

    Article  PubMed  CAS  Google Scholar 

  • Johrde A, Schweizer P (2008) A class III peroxidase specifically expressed in pathogen-attacked barley epidermis contributes to basal resistance. Mol Plant Pathol 9:687–696

    Article  PubMed  CAS  Google Scholar 

  • Kaku H, Shibuya N, Xu PL, Aryan AP, Fincher GB (1997) N-acetylchitooligosaccharides elicit expression of a single (1–3)-beta-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiol Plant 100:111–118

    Article  CAS  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091

    Article  PubMed  CAS  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    PubMed  CAS  Google Scholar 

  • Kim DJ, Baek JM, Uribe P, Kenerley CM, Cook DR (2002) Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40:374–384

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW (1991) Development of invivo assays for prescreening antagonists of Rhizoctonia solani on cotton. Phytopathology 81:1006–1013

    Article  Google Scholar 

  • Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Taylor ATS, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121:147–152

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic-engineering of rice for resistance to sheath blight. Biotechnol 13:686–691

    Article  CAS  Google Scholar 

  • Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123–150

    Article  CAS  Google Scholar 

  • Lorito M, Scala F (1999) Microbial genes expressed in transgenic plants to improve disease resistance. J Plant Pathol 81:73–88

    Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Dipietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum—antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302–307

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  PubMed  CAS  Google Scholar 

  • Marmey P, Jalloul A, Alhamdia M, Assigbetse K, Cacas JL, Voloudakis AE, Champion A, Clerivet A, Montillet JL, Nicole M (2007) The 9-lipoxygenase GhLOX1 gene is associated with the hypersensitive reaction of cotton Gossypium hirsutum to Xanthomonas campestris pv malvacearum. Plant Physiol Biochem 45:596–606

    Article  PubMed  CAS  Google Scholar 

  • Martinez C, Montillet JL, Bresson E, Agnel JP, Dai GH, Daniel JF, Geiger JP, Nicole M (1998) Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum race 18. Mol Plant Microbe Interact 11:1038–1047

    Article  CAS  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray F, Llewellyn D, McFadden H, Last D, Dennis ES, Peacock WJ (1999) Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Mol Breed 5:219–232

    Article  CAS  Google Scholar 

  • Navazio L, Baldan B, Moscatiello R, Zuppini A, Woo SL, Mariani P, Lorito M (2007) Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biol 7:41

    Article  PubMed  CAS  Google Scholar 

  • Ning W, Chen F, Mao BZ, Li Q, Liu ZX, Guo ZJ, He ZH (2004) N-acetylchitooligosaccharides elicit rice defence responses including hypersensitive response-like cell death, oxidative burst and defence gene expression. Physiol Mol Plant Pathol 64:263–271

    Article  CAS  Google Scholar 

  • Plazek A, Zur I (2003) Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Sci 164:1019–1028

    Article  CAS  Google Scholar 

  • Powell NT, Melendez PL, Batten CK (1971) Disease complexes in tobacco involving Meloidogyne incognita and certain soil-borne fungi. Phytopathology 61:1332–1337

    Article  Google Scholar 

  • Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28:S298–S308

    CAS  Google Scholar 

  • Ren Y, Wee KE, Chang FN (2000) Deficiency of current methods in assaying endochitinase activity. Biochem Biophys Res Commun 268:302–305

    Article  PubMed  CAS  Google Scholar 

  • Roby D, Broglie K, Cressman R, Biddle P, Chet IL, Broglie R (1990) Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2:999–1007

    Article  PubMed  Google Scholar 

  • Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H, Ohashi Y (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol 45:1442–1452

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Shrestha CL, Ona I, Muthukrishnan S, Mew TW (2008) Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani. Eur J Plant Pathol 120:69–77

    Article  CAS  Google Scholar 

  • Stipanovic RD, Bell AA, Benedict CR (1999) Cotton pest resistance: the role of pigment gland constituents. In: Cutler HG, Cutler SJ (eds) Biologically active natural products: agrochemicals. CRC Press, Boca Raton, pp 211–220

    Google Scholar 

  • Thordal-Christensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • van Hengel AJ, Guzzo F, van Kammen A, de Vries SC (1998) Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing seeds. Plant Physiol 117:43–53

    Article  PubMed  Google Scholar 

  • van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    Article  PubMed  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    Article  PubMed  CAS  Google Scholar 

  • Wu GS, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose-oxidase in transgenic potato plants. Plant Cell 7:1357–1368

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Shibuya N, Kodama O, Akatsuka T (1993) Induction of phytoalexin formation in suspension-cultured rice cells by N-acetyl-chitooligosaccharides. Biosci Biotechnol Biochem 57:405–409

    Article  CAS  Google Scholar 

  • Zhang D, Hrmova M, Wan CH, Wu C, Balzen J, Cai W, Wang J, Densmore LD, Fincher GB, Zhang H, Haigler CH (2004) Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol Biol 54:353–372

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Kays SJ, Schroeder BP, Ye ZH (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14:165–179

    Article  PubMed  CAS  Google Scholar 

  • Zhou BY, Wang JH, Guo ZF, Tan HQ, Zhu XC (2006) A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul 49:113–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Robert D. Stipanovic and Lorraine Puckhaber for their help with terpenoid analysis and Drs. Alois Bell and Charles Howell for their valuable suggestions and advice during the course of this investigation. This research was supported by funds from Texas Higher Education Coordinating Board – Advanced Research Program (#000517-0005-2006), Cotton Inc., and Texas AgriLife Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerti S. Rathore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Parkhi, V., Kenerley, C.M. et al. Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani . Planta 230, 277–291 (2009). https://doi.org/10.1007/s00425-009-0937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0937-z

Keywords

Navigation