Skip to main content
Log in

Heterologous expression and characterization of Bacillus coagulans l-arabinose isomerase

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bucke C (1983) Practicality of industrial enzymes. Biochem Soc Trans 11:13–14

    CAS  Google Scholar 

  • Cheng L, Mu W, Zhang T, Jiang B (2010) An l-arabinose isomerase from Acidothermus cellulolytics ATCC 43068: cloning, expression, purification, and characterization. Appl Microbiol Biotechnol 86:1089–1097

    Article  CAS  Google Scholar 

  • Chouayekh H, Bejar W, Rhimi M, Jelleli K, Mseddi M, Bejar S (2007) Characterization of an l-arabinose isomerase from the Lactobacillus plantarum NC8 strain showing pronounced stability at acidic pH. FEMS Microbiol Lett 277:260–267

    Article  CAS  Google Scholar 

  • De Muynck C, Beauprez J, Soetaert W, Vandamme EJ (2006a) Boric acid as a mobile phase additive for high performance liquid chromatography separation of ribose, arabinose and ribulose. J Chromatogr A 1101:115–121

    Article  Google Scholar 

  • De Muynck C, Pereira C, Soetaert W, Vandamme E (2006b) Dehydrogenation of ribitol with Gluconobacter oxydans: production and stability of l-ribulose. J Biotechnol 125:408–415

    Article  Google Scholar 

  • Dische Z, Borenfreund E (1951) A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem 192:583–587

    CAS  Google Scholar 

  • Heath EC, Horecker BL, Smyrniotis PZ, Takagi Y (1958) Pentose fermentation by Lactobacillus plantarum. II. l-arabinose isomerase. J Biol Chem 231:1031–1037

    CAS  Google Scholar 

  • Helanto M, Kiviharju K, Leisola M, Nyyssola A (2007) Metabolic engineering of Lactobacillus plantarum for production of l-ribulose. Appl Environ Microbiol 73:7083–7091

    Article  CAS  Google Scholar 

  • Jorgensen F, Hansen OC, Stougaard P (2004) Enzymatic conversion of d-galactose to d-tagatose: heterologous expression and characterisation of a thermostable l-arabinose isomerase from Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 64:816–822

    Article  CAS  Google Scholar 

  • Kim P (2004) Current studies on biological tagatose production using l-arabinose isomerase: a review and future perspective. Appl Microbiol Biotechnol 65:243–249

    CAS  Google Scholar 

  • Kim HJ, Oh DK (2005) Purification and characterization of an l-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing d-tagatose. J Biotechnol 120:162–173

    Article  CAS  Google Scholar 

  • Kim BC, Lee YH, Lee HS, Lee DW, Choe EA, Pyun YR (2002) Cloning, expression and characterization of l-arabinose isomerase from Thermotoga neapolitana: bioconversion of d-galactose to d-tagatose using the enzyme. FEMS Microbiol Lett 212:121–126

    CAS  Google Scholar 

  • Kim HJ, Kim JH, Oh HJ, Oh DK (2006) Characterization of a mutated Geobacillus stearothermophilus l-arabinose isomerase that increases the production rate of d-tagatose. J Appl Microbiol 101:213–221

    Article  CAS  Google Scholar 

  • Kim JH, Prabhu P, Jeya M, Tiwari MK, Moon HJ, Singh RK, Lee JK (2010) Characterization of an l-arabinose isomerase from Bacillus subtilis. Appl Microbiol Biotechnol 85:1839–1847

    Article  CAS  Google Scholar 

  • Kylma AK, Granstrom T, Leisola M (2004) Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for l-ribulose production. Appl Microbiol Biotechnol 63:584–591

    Article  CAS  Google Scholar 

  • Lee DW, Jang HJ, Choe EA, Kim BC, Lee SJ, Kim SB, Hong YH, Pyun YR (2004) Characterization of a thermostable l-arabinose (d-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Appl Environ Microbiol 70:1397–1404

    Article  CAS  Google Scholar 

  • Lee DW, Choe EA, Kim SB, Eom SH, Hong YH, Lee SJ, Lee HS, Lee DY, Pyun YR (2005a) Distinct metal dependence for catalytic and structural functions in the l-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Arch Biochem Biophys 434:333–343

    Article  CAS  Google Scholar 

  • Lee SJ, Lee DW, Choe EA, Hong YH, Kim SB, Kim BC, Pyun YR (2005b) Characterization of a thermoacidophilic l-arabinose isomerase from Alicyclobacillus acidocaldarius: role of Lys-269 in pH optimum. Appl Environ Microbiol 71:7888–7896

    Article  CAS  Google Scholar 

  • Liu SY, Wiegel J, Gherardini FC (1996) Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489. J Bacteriol 178:5938–5945

    CAS  Google Scholar 

  • Manjasetty BA, Chance MR (2006) Crystal structure of Escherichia coli l-arabinose isomerase (ECAI), the putative target of biological tagatose production. J Mol Biol 360:297–309

    Article  CAS  Google Scholar 

  • Mathe C, Gosselin G (2006) l-nucleoside enantiomers as antivirals drugs: a mini-review. Antiviral Res 71:276–281

    Article  CAS  Google Scholar 

  • Mizanur RM, Takata G, Izumori K (2001) Cloning and characterization of a novel gene encoding l-ribose isomerase from Acinetobacter sp. strain DL-28 in Escherichia coli. Biochim Biophys Acta 1521:141–145

    CAS  Google Scholar 

  • Oh DK (2007) Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol 76:1–8

    Article  CAS  Google Scholar 

  • Ou MS, Mohammed N, Ingram LO, Shanmugam KT (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155:379–385

    Article  CAS  Google Scholar 

  • Poonperm W, Takata G, Okada H, Morimoto K, Granstrom TB, Izumori K (2007) Cloning, sequencing, overexpression and characterization of l-rhamnose isomerase from Bacillus pallidus Y25 for rare sugar production. Appl Microbiol Biotechnol 76:1297–1307

    Article  CAS  Google Scholar 

  • Prabhu P, Tiwari MK, Jeya M, Gunasekaran P, Kim IW, Lee JK (2008) Cloning and characterization of a novel l-arabinose isomerase from Bacillus licheniformis. Appl Microbiol Biotechnol 81:283–290

    Article  CAS  Google Scholar 

  • Prabhu P, Jeya M, Lee JK (2010) Probing the molecular determinant for the catalytic efficiency of l-arabinose isomerase from Bacillus licheniformis. Appl Environ Microbiol 76:1653–1660

    Article  CAS  Google Scholar 

  • Qin J, Zhao B, Wang X, Wang L, Yu B, Ma Y, Ma C, Tang H, Sun J, Xu P (2009) Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PLoS One 4:e4359

    Article  Google Scholar 

  • Rhimi M, Bejar S (2006) Cloning, purification and biochemical characterization of metallic-ions independent and thermoactive l-arabinose isomerase from the Bacillus stearothermophilus US100 strain. Biochim Biophys Acta 1760:191–199

    Article  CAS  Google Scholar 

  • Rhimi M, Juy M, Aghajari N, Haser R, Bejar S (2007) Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 l-arabinose isomerase by site-directed mutagenesis. J Bacteriol 189:3556–3563

    Article  CAS  Google Scholar 

  • Smith KW, Johnson SL (1976) Borate inhibition of yeast alcohol dehydrogenase. Biochemistry 15:560–565

    Article  CAS  Google Scholar 

  • Spagnuolo M, Crecchio C, Pizzigallo MD, Ruggiero P (1999) Fractionation of sugar beet pulp into pectin, cellulose, and arabinose by arabinases combined with ultrafiltration. Biotechnol Bioeng 64:685–691

    Article  CAS  Google Scholar 

  • Yeom SJ, Ji JH, Yoon RY, Oh DK (2008) l-Ribulose production from l-arabinose by an l-arabinose isomerase mutant from Geobacillus thermodenitrificans. Biotechnol Lett 30:1789–1793

    Article  CAS  Google Scholar 

  • Yeom SJ, Kim NH, Park CS, Oh DK (2009) l-ribose production from l-arabinose by using purified l-arabinose isomerase and mannose-6-phosphate isomerase from Geobacillus thermodenitrificans. Appl Environ Microbiol 75:6941–6943

    Article  CAS  Google Scholar 

  • Yoon SH, Kim P, Oh DK (2003) Properties of l-arabinose isomerase from Escherichia coli as biocatalyst for tagatose production. World J Microbiol Biotechnol 19:47–51

    Article  CAS  Google Scholar 

  • Zhang YW, Jeya M, Lee JK (2010) l-Ribulose production by an Escherichia coli harboring l-arabinose isomerase from Bacillus licheniformis. Appl Microbiol Biotechnol 87:1993–1999

    Article  CAS  Google Scholar 

  • Zhu W, Manjasetty BA, Chance MR (2007) Crystal structure of Mn2+-bound Escherichia coli l-arabinose Isomerase (ECAI) and Implications in protein catalytic mechanism and thermo-stability. J Young Investigators 17. http://www.jyi.org/research/re.php?id=1255. Accessed 7 Feb 2012

Download references

Acknowledgments

This research was supported by the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR) of Singapore (SERC grant no 0921590133). We are grateful to Dr. Keith Carpenter for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Chuan Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Wu, J.C. Heterologous expression and characterization of Bacillus coagulans l-arabinose isomerase. World J Microbiol Biotechnol 28, 2205–2212 (2012). https://doi.org/10.1007/s11274-012-1026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1026-1

Keywords

Navigation