Skip to main content

Advertisement

Log in

Thermophilic Bacillus coagulans Requires Less Cellulases for Simultaneous Saccharification and Fermentation of Cellulose to Products than Mesophilic Microbial Biocatalysts

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g−1 cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g−1 cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). DOE/GO-102005-2135.

  2. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al. (2002). NREL/TP-510-32438.

  3. Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33. doi:10.1016/0960-8524(95)00122-0.

    Article  CAS  Google Scholar 

  4. Kheshgi, H. S., Prince, R. C., & Marland, G. (2000). Annual Review of Energy and the Environment, 25, 199–244. doi:10.1146/annurev.energy.25.1.199.

    Article  Google Scholar 

  5. Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). Nature Biotechnology, 26, 169–172. doi:10.1038/nbt0208-169.

    Article  CAS  Google Scholar 

  6. Wooley, R., Ruth, M., Glassner, D., & Sheehan, J. (1999). Biotechnology Progress, 15, 794–803. doi:10.1021/bp990107u.

    Article  CAS  Google Scholar 

  7. Wyman, C. E. (2007). Trends in Biotechnology, 25, 153–157. doi:10.1016/j.tibtech.2007.02.009.

    Article  CAS  Google Scholar 

  8. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34. doi:10.1007/s002530100624.

    Article  CAS  Google Scholar 

  9. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Biotechnology and Bioengineering, 36, 275–287. doi:10.1002/bit.260360310.

    Article  CAS  Google Scholar 

  10. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577. doi:10.1128/MMBR.66.3.506-577.2002.

    Article  CAS  Google Scholar 

  11. Gauss, W. F., Suzuki, S., & Takagi, M. (1976). Manufacture of alcohol from cellulosic materials using plural ferments. United States patent 3,990,944.

  12. Patel, M. A., Ou, M., Ingram, L. O., & Shanmugam, K. T. (2005). Biotechnology Progress, 21, 1453–1460. doi:10.1021/bp0400339.

    Article  CAS  Google Scholar 

  13. Bothast, R. J., & Schlicher, M. A. (2005). Applied Microbiology and Biotechnology, 67, 19–25. doi:10.1007/s00253-004-1819-8.

    Article  CAS  Google Scholar 

  14. Carr, F. J., Chill, D., & Maida, N. (2002). Critical Reviews in Microbiology, 28, 281–370. doi:10.1080/1040-840291046759.

    Article  CAS  Google Scholar 

  15. Hofvendahl, K., & Hans-Hagerdal, B. (2000). Enzyme and Microbial Technology, 26, 87–107. doi:10.1016/S0141-0229(99)00155-6.

    Article  CAS  Google Scholar 

  16. Martin, A. M. (1996). Fermentation processes for the production of lactic acid. In T. F. Bozoglu & B. Ray (Eds.), Lactic acid bacteria: Current advances in metabolism, genetics and applications, Vol. Nato ASI Series (vol. H98, (pp. 269–301)). New York: Springer.

    Google Scholar 

  17. Patel, M. A., Ou, M. S., Harbrucker, R., Aldrich, H. C., Buszko, M. L., Ingram, L. O., et al. (2006). Applied and Environmental Microbiology, 72, 3228–3235. doi:10.1128/AEM.72.5.3228-3235.2006.

    Article  CAS  Google Scholar 

  18. Allen, M. B., & Arnon, D. I. (1955). Plant Physiology, 30, 366–372. doi:10.1104/pp.30.4.366.

    Article  CAS  Google Scholar 

  19. Underwood, S. A., Buszko, M. L., Shanmugam, K. T., & Ingram, L. O. (2002). Applied and Environmental Microbiology, 68, 1071–1081. doi:10.1128/AEM.68.3.1071-1081.2002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. P. Rooney for providing some of the strains used in this study, Genencor Intl. for the cellulase preparation and International Fiber Corp. for Solka Floc. This study was supported in part by a grant from the Department of Energy (DE-FG36-04GO14019) and the State of Florida, University of Florida Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Shanmugam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, M.S., Mohammed, N., Ingram, L.O. et al. Thermophilic Bacillus coagulans Requires Less Cellulases for Simultaneous Saccharification and Fermentation of Cellulose to Products than Mesophilic Microbial Biocatalysts. Appl Biochem Biotechnol 155, 76–82 (2009). https://doi.org/10.1007/s12010-008-8509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8509-4

Keywords

Navigation