Skip to main content
Log in

Overexpression of β-carotene hydroxylase1 (BCH1) in Indian mulberry, Morus indica cv. K2, confers tolerance against UV, high temperature and high irradiance stress induced oxidative damage

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In general, stress caused by high light, high temperature and UV irradiation is unified and leads to the production of reactive oxygen species (ROS) having detrimental consequences for plants. Carotenoids are present in all photosynthetic plants as accessory pigments and have been implicated in protection against photooxidative damage. One major enzyme in the carotenoid biosynthetic pathway, β-carotene hydroxylase has been maneuvered for increasing stress tolerance of plants. Overexpression of β-carotene hydroxylase1 (BCH1) in Morus indica cv. K2 under the influence of CaMV 35S promoter was undertaken by Agrobacterium-mediated transformation. This gene when over expressed shows higher levels of carotenoids and improved oxidative stress tolerance as compared with the untransformed wild type under non-stressed and stressed conditions. The carotenoid and chlorophyll content was found to be enhanced in the overexpression lines under different stresses. The amount of ROS was found to be significantly lower in the overexpression line. Also, a corresponding increase in membrane stability suggests a positive role of the over expression of BCH1 on maintaining membrane integrity under induced oxidative stress conditions. Enhanced tolerance to high light, heat and UV irradiation was achieved in M. indica cv. K2 indicating the potential of this gene to suit the changing climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baroli I, Niyogi KK (2000) Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants. Philos Trans R Soc Lond B Biol Sci 355:1385–1394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Khurana P (2003) Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy. Plant Cell Rep 21:669–675

  • Campos JL, Figueras X, Pinol MT, Boronat A, Tiburcio F (1991) Carotenoid and conjugated polyamine levels as indicators of ultraviolet-C induced stress in Arabidopsis thaliana. Photochem Photobiol 53:689–693

    Article  CAS  Google Scholar 

  • Chaitanya KV, Sundar D, Reddy AR (2001) Mulberry leaf metabolism under high temperature stress. Biol Plant 44:379–384

    Article  CAS  Google Scholar 

  • Chaudhary N, Nijhawan A, Khurana JP, Khurana P (2010) Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis. Mol Genet Genomics 283:13–33

    Article  CAS  PubMed  Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2011) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957

    Article  PubMed  Google Scholar 

  • Checker VG, Saeed B, Khurana P (2012) Analysis of expressed sequence tags from mulberry (Morus indica) roots and implications for comparative transcriptomics and marker identification. Tree Genet Gen 8:1437–1450

    Article  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • D’Ambrosio C, Stigliani AL, Giorio G (2011) Overexpression of CrtR-b2 (carotene beta hydroxylase2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants. Transgenic Res 20:47–60

    Article  PubMed  Google Scholar 

  • Das M, Chauhan H, Chibbar A, Haq QMR, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246

    Article  CAS  PubMed  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  PubMed  Google Scholar 

  • Demmig B, Winter K, Kruger A, Czygan FC (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol 87:17–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G (2007) Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol 7:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Götz T, Sandmann G, Römer S (2002) Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco. Plant Mol Biol 50:129–142

    Article  PubMed  Google Scholar 

  • Guzman I, Hamby S, Romero J, Bosland PW, O’Connell MA (2010) Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Sci 179:49–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Article  Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96:8762–8767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Jahns P, Holzwarth AR (2011) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khurana P, Checker VG (2011) The advent of genomics in mulberry and perspectives for productivity enhancement. Plant Cell Rep 30:825–838

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Lee CH, Shin JS, Chung YS, Hyung NI (1997) A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res 25:1085–1086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim IJ, Ko KC, Kim CS, Chung WII (2001) Isolation and characterization of cDNAs encoding β-carotene hydroxylase in Citrus. Plant Sci 161:1005–1010

    Article  CAS  Google Scholar 

  • Krinsky N (1998) The antioxidant and biological properties of the carotenoids. Ann NY Acad Sci 854:443–447

    Article  CAS  PubMed  Google Scholar 

  • Lal S, Bhatnagar S, Khurana P (2006) Screening of Indian mulberry for abiotic stress tolerance and ameliorative effect of calcium on salinity stress. Physiol Mol Biol Plants 12:193–199

    CAS  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    Article  CAS  PubMed  Google Scholar 

  • Lal S, Ravi V, Khurana JP, Khurana P (2009) Repertoire of leaf expressed sequence tags (ESTs) and partial characterization of stress-related and membrane transporter genes from mulberry (Morus indica L.). Tree Genet Gen 5:359–374

    Article  Google Scholar 

  • Li F, Vallabhaneni R, Wurtzel ET (2008) PSY3, a new member of the phytoene synthase gene family conserved in the poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Q, Farre G, Naqvi S, Breitenbach J, Sanahuja G, Bai C, Sandmann G, Capell T, Christou P, Zhu C (2010) Cloning and functional characterization of the maize carotenoid isomerase and β-carotene hydroxylase genes and their regulation during endosperm maturation. Transgenic Res 19:1053–1068

    Article  CAS  PubMed  Google Scholar 

  • Liang YS, Bae HJ, Kang SH, Lee T, Kim MG, Kim YM, Ha SH (2009) The Arabidopsis beta-carotene hydroxylase gene promoter for a strong constitutive expression of transgene. Plant Biotechnol Rep 3:325–331

    Article  Google Scholar 

  • Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci USA 109:5535–5540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren Y, Bang H, Lee EJ, Gould J, Rathore KS, Patil BS, Crosby KM (2013) Levels of phytoene and β-carotene in transgenic honeydew melon (Cucumis melo L. inodorus). Plant Cell Tissue Organ Cult 113:291–301

    Article  CAS  Google Scholar 

  • Sagar AD, Briggs WR (1990) Effects of high light stress on carotenoid-deficient chloroplasts in Pisum sativum. Plant Physiol 94:1663–1670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:584–593

    Google Scholar 

  • Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:14–17

    Article  CAS  PubMed  Google Scholar 

  • Tan CP, Zhao FQ, Su ZL, Liang CW, Qin S (2007) Expression of beta-carotene hydroxylase gene (crtR-B) from the green alga Haematococcus pluvialis in chloroplasts of Chlamydomonas reinhardtii. J Appl Phycol 19:347–355

    Article  CAS  Google Scholar 

  • Taylor M, Ramsay G (2005) Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiol Plant 124:143–151

    Article  CAS  Google Scholar 

  • Thayer SS, Bjorkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343

    Article  CAS  PubMed  Google Scholar 

  • Tian L, DellaPenna D (2004) Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Arch Biochem Biophys 430:22–29

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang N, Fang W, Han H, Sui N, Li B, Meng QW (2008) Overexpression of zeaxanthin epoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light and chilling stress. Physiol Plant 132:384–396

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T (1958) Substances in mulberry leaves which attract silkworm larvae (Bombyx mori). Nature 182:325–326

    Article  CAS  Google Scholar 

  • Wellburn A (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wright LA, Murphy TM, Travis RL (1981) The effect of ultraviolet radiation on wheat root vesicles enriched in plasma membrane. Photochem Photobiol 33:343–348

    Article  CAS  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tissue Organ Cult 117:99–112

    Article  CAS  Google Scholar 

  • Yu B, Lydiate DJ, Schafer UA, Hannoufa A (2007) Characterization of a beta-carotene hydroxylase of Adonis aestivalis and its expression in Arabidopsis thaliana. Planta 226:181–192

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Yuan Y, Yang Y, Rutzke M, Thannhauser TW, Kochian LV, Li L (2009) Involvement of a broccoli COQ5 methyl transferase in the production of volatile selenium compounds. Plant Physiol 151:528–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Grants received from DBT (Department of Biotechnology, Government of India). BS acknowledges the award of Junior Research Fellowship and MD acknowledges the award of Senior Research Fellowship by CSIR (Council of Scientific and Industrial Research) and DBT (Department of Biotechnology), respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Khurana.

Additional information

Bushra Saeed and Manaswini Das have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 346 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, B., Das, M. & Khurana, P. Overexpression of β-carotene hydroxylase1 (BCH1) in Indian mulberry, Morus indica cv. K2, confers tolerance against UV, high temperature and high irradiance stress induced oxidative damage. Plant Cell Tiss Organ Cult 120, 1003–1014 (2015). https://doi.org/10.1007/s11240-014-0654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0654-6

Keywords

Navigation