Skip to main content
Log in

Cloning and functional characterization of the maize carotenoid isomerase and β-carotene hydroxylase genes and their regulation during endosperm maturation

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

In order to gain further insight into the partly-characterized carotenoid biosynthetic pathway in corn (Zea mays L.), we cloned cDNAs encoding the enzymes carotenoid isomerase (CRTISO) and β-carotene hydroxylase (BCH) using endosperm mRNA isolated from inbred line B73. For both enzymes, two distinct cDNAs were identified mapping to different chromosomes. The two crtiso cDNAs (Zmcrtiso1 and Zmcrtiso2) mapped to unlinked genes each containing 12 introns, a feature conserved among all crtiso genes studied thus far. ZmCRTISO1 was able to convert tetra-cis prolycopene to all-trans lycopene but could not isomerize the 15-cis double bond of 9,15,9′-tri-cis-ζ-carotene. ZmCRTISO2 is inactivated by a premature termination codon in B73 corn, but importantly the mutation is absent in other corn cultivars and the active enzyme showed the same activity as ZmCRTISO1. The two bch cDNAs (Zmbch1 and Zmbch2) mapped to unlinked genes each coding sequences containing five introns. ZmBCH1 was able to convert β-carotene into β-cryptoxanthin and zeaxanthin, but ZmBCH2 was able to form β-cryptoxanthin alone and had a lower overall activity than ZmBCH1. All four genes were expressed during endosperm development, with mRNA levels rising in line with carotenoid accumulation (especially zeaxanthin and lutein) until 25 DAP. Thereafter, expression declined for three of the genes, with only Zmcrtiso2 mRNA levels maintained by 30 DAP. We discuss the impact of paralogs with different expression profiles and functions on the regulation of carotenoid synthesis in corn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Kim EH, DellaPenna D, Brunell TP (2009) Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. Plant J 59:588–599

    Article  CAS  PubMed  Google Scholar 

  • Bouvier F, Keller Y, d’Harlingue A, Camara B (1998) Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.). Biochim Biophys Acta 1391:320–328

    CAS  PubMed  Google Scholar 

  • Bramley PM (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot 53:2107–2113

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach J, Sandmann G (2005) ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta 220:785–793

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach J, Vioque A, Sandmann G (2001a) Gene sll0033 from Synechocystis 6803 encodes a carotene isomerase involved in the biosynthesis of all-E lycopene. Z Naturforsch 56C:915–917

    Google Scholar 

  • Breitenbach J, Braun G, Steiger S, Sandmann G (2001b) Chromatographic performance on a C30-bonded stationary phase of mono hydroxycarotenoids with variable chain length or degree of desaturation and of lycopene isomers synthesized by different carotene desaturases. J Chromatogr A 936:59–69

    Article  CAS  PubMed  Google Scholar 

  • Buckner B, Miguel PS, Janick-Buckner D, Bennetzen JL (1996) The y1 gene of maize codes for phytoene synthase. Genetics 143:479–488

    CAS  PubMed  Google Scholar 

  • Castillo R, Fernandez JA, Gomez-Gomez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crous sativa and its closer relatives. Plant Physiol 139:674–689

    Article  CAS  PubMed  Google Scholar 

  • Creelman RA, Zeevart JA (1984) Incorporation of oxygen into abscisic acid and phaseic acid from molecular oxygen. Plant Physiol 75:166–169

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Enfiss EMA, Bramley PM (2009) Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch Biochem Biophys 483:196–204

    Article  CAS  PubMed  Google Scholar 

  • Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135:1776–1783

    Article  CAS  PubMed  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb LD (1982) Conservation and duplication of isozymes in plants. Science 216:373–380

    Article  CAS  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed  Google Scholar 

  • Higuchi R (1990) Recombinant PCR. In: PCR protocols. Academic Press, New York

  • Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ 29:435–445

    Article  CAS  PubMed  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  CAS  PubMed  Google Scholar 

  • Isaacson T, Ohad I, Beyer P, Hirschberg J (2004) Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol 136:4246–4255

    Article  CAS  PubMed  Google Scholar 

  • Iskandar HM, Simpson RS, Casu RE, Bonneti GD, Maclean DJ, Manners JM (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep 22:325–337

    Article  CAS  Google Scholar 

  • Kim IJ, Ko KC, Kim CS, Chung WI (2001) Isolation and characterization of cDNAs encoding β-carotene hydroxylase in Citrus. Plant Sci 161:1005–1010

    Article  CAS  Google Scholar 

  • Kim J, Smith JJ, Tian L, DellaPenna D (2009) The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol 50:463–479

    Article  CAS  PubMed  Google Scholar 

  • Li ZH, Matthews PD, Burr B, Wurtzel ET (1996) Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Mol Biol 30:269–279

    Article  CAS  PubMed  Google Scholar 

  • Li F, Murillo C, Wurtzel ET (2007) Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol 144:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vallabhaneni R, Wurtzel ET (2008a) PSY3, a new member of the phytoene synthase gene family conserved in the poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vallabhaneni R, Rocheford T, Wurtzel ET (2008b) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147:1334–1346

    Article  CAS  PubMed  Google Scholar 

  • Linden H, Vioque A, Sandmann G (1993) Isolation of a carotenoid biosynthesis gene coding for a zeta-carotene desaturase from Anabaena PCC7120 by heterologous complementation. FEMS Microbiol Lett 106:99–104

    CAS  Google Scholar 

  • Masamoto K, Wada H, Kaneko T, Takaichi S (2001) Identification of a gene required for cis-to-trans carotene isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42:1398–1402

    Article  CAS  PubMed  Google Scholar 

  • Matthews PD, Luo R, Wurtzel ET (2003) Maize phytoene desaturase and zetacarotene desaturase catalyze a poly-Z desaturation pathway: implication for genetic engineering of carotenoid content among cereal crops. J Exp Bot 54:2215–2230

    Article  CAS  PubMed  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712

    CAS  PubMed  Google Scholar 

  • Misawa N, Truesdale MR, Sandmann G, Fraser PD, Bird C, Schuch W, Bramley PM (1994) Expression of a tomato cDNA coding for phytoene synthase in Escherichia coli, phytoene formation in vivo and in vitro, and functional analysis of the various truncated gene products. J Biochem 116:980–985

    CAS  PubMed  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    Article  CAS  PubMed  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  CAS  PubMed  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Sander LC, Sharpless KE, Craft NE, Wise SA (1994) Development of engineered stationary phases for the separation of carotenoid isomers. Anal Chem 66:1667–1674

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Romer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng 8:291–302

    Article  CAS  PubMed  Google Scholar 

  • Schnurr G, Misawa N, Sandmann G (1996) Expression, purification and properties of lycopene cyclase from Erwinia uredovora. Biochem J 315:869–874

    CAS  PubMed  Google Scholar 

  • Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Lewis PE, Hardeman K, Bai L, Rose JKC, Mazourek M, Chomet P, Brutnell TP (2003) Activator mutagenesis of the Pink scutellum1/viviparous7 locus of maize. Plant Cell 15:874–884

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Gantt E, Cunningham FX (1996) Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem 271:24349–24352

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Tian L, DellaPenna D (2001) Characterization of a second carotenoid β-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus. Plant Mol Biol 47:379–388

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D (2003) Functional analysis of β- and ε-ring carotenoid hydroxylases in Arabidopsis. Plant Cell 15:1320–1332

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Vallabhaneni R, Wurtzel ET (2009) Timing and biosynthetic potential for provitamin A accumulation in maize. Plant Physiol 150:562–572

    Article  CAS  PubMed  Google Scholar 

  • Vallabhaneni R, Gallagher CE, Licciardello N, Cuttriss AJ, Quinlan RF, Wurtzel ET (2009) Metabolites sorting of a germplasm collection reveals the Hydroxylases3 locus as a new target for maize provitamin A biofortification. Plant Physiol 151:1635–1645

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–556

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Capell T, Christou P (2009) Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch Biochem Biophys 483:182–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministry of Science and Innovation (MICINN) (BFU2007-61413), European Research Council Advanced Grant (BIOFORCE) to PC, Aciones complementarias, BIO2007-30738-E MICINN, Spain, a grant from the National Natural Science Foundation of China (grant no. 30870222) and the Foundation from Science and Technology Agency of Jilin Province (grant no. 20050543). G.F. and S.N. were supported by MICINN PhD fellowships. We would like to thank Dr. Ana Ana Butrón and Amando Ordás in Misión Biológica de Galicia, Consejo Superior de Investigaciones Cientificas, Apartado 28, 36080 Pontevedra, Spain, for supplying corn seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfu Zhu.

Additional information

Qunrui Li and Gemma Farre contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Farre, G., Naqvi, S. et al. Cloning and functional characterization of the maize carotenoid isomerase and β-carotene hydroxylase genes and their regulation during endosperm maturation. Transgenic Res 19, 1053–1068 (2010). https://doi.org/10.1007/s11248-010-9381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9381-x

Keywords

Navigation