Skip to main content
Log in

Comparative proteomic analysis of the H99 inbred maize (Zea mays L.) line in embryogenic and non-embryogenic callus during somatic embryogenesis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A proteomic approach based on two-dimensional electrophoresis (2-DE) and mass spectrometry was performed to investigate somatic embryogenesis in the H99 inbred maize line by comparing embryogenic and non-embryogenic callus. Protein spots (n = 42) were differentially expressed between embryogenic calli and non-embryogenic calli according to our image analysis. Among them, 33 proteins were differentially expressed by at least threefold, with 15 up-regulated and 18 down-regulated in the embryogenic callus versus the non-embryogenic callus. However, only nine proteins were expressed in either of the calli. Twenty-nine protein spots were identified using mass spectrometry analysis and classified into several categories based on the matrix-science MASCOT and NCBI databases. These categories included cell proliferation (10.34 %), transcription and protein processing (17.24 %), stress response (10.34 %), signal transduction (3.45 %), metabolism and energy (48.28 %) and hypothetical function (10.34 %). Their putative roles are discussed according to their relevance in somatic embryogenesis. Real-time reverse transcription polymerase chain reaction analysis revealed that the expression levels of five selected genes were consistent with the profiles detected in the 2-DE gels, further confirming the proteomic analysis. This study is the first comparative proteome analysis between the embryogenic callus and the non-embryogenic callus of the H99 inbred line. Our results show the differentially expressed proteins between the two callus types and reveal some key proteins that may have significant roles in molecular events during somatic embryogenesis in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahsan N, Lee DG, Lee KW, Alam I, Lee SH, Bahk JD, Lee BH (2008) Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem 46:1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Binott JJ, Songa JM, Ininda J, Njagi EM, Machuka J (2008) Plant regeneration from immature embryos of Kenyan maize inbred lines and their respective single cross hybrids through somatic embryogenesis. Afr J Biotech 7:981–987

    CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryogenic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brettschneider R, Becker D, Lörz H (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94:737–748

    Article  CAS  Google Scholar 

  • Brukhin V, Gheyselinck J, Gagliardini V, Genschik P, Grossniklaus U (2005) The RPN1 subunit of the 26S proteasome in Arabidopsis is essential for embryogenesis. Plant Cell 17:2723–2737

    Article  PubMed  CAS  Google Scholar 

  • Busch W, Benfey PN (2010) Information processing without brains—the power of intercellular regulators in plants. Development 137:1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Bustos DM, Bustamante CA, Iglesias AA (2008) Involvement of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in response to oxidative stress. J Plant Physiol 165:456–461

    Article  PubMed  CAS  Google Scholar 

  • Cangahuala-Inocente GC, Villarino A, Seixas D, Dumas-Gaudot E, Terenzi H, Guerra MP (2009) Differential proteomic analysis of developmental stages of Acca sellowiana somatic embryos. Acta Physiol Plant 31:501–514

    Article  CAS  Google Scholar 

  • Casacuberta JM, Raventós D, Puigdoménech P, San Segundo B (1992) Expression of the gene encoding the PR-like protein PRms in germinating maize embryos. Mol Gen Genet MGG 234:97–104

    CAS  Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123

    Article  PubMed  CAS  Google Scholar 

  • Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14

    Article  PubMed  CAS  Google Scholar 

  • Chen SX, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  PubMed  CAS  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hus C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for another culture of rice through comparative experiments on nitrogen source. Sci Sin 18:659–668

    Google Scholar 

  • Eliuk SM, Maltby D, Panning B, Burlingame AL (2010) High resolution electron transfer dissociation studies of unfractionated intact histones from Murine embryogenic stem cells using on-line capillary LC separation. Mol Cell Proteomics 9:824–837

    Article  PubMed  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Filippov M, Miroshnichenko D, Vernikovskaya D, Dolgov S (2006) The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat. Plant Cell Tissue Organ Cult 84:213–222

    Article  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation and signalling. J Exp Bot 58:2339–2358

    Article  PubMed  CAS  Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187

    Article  PubMed  CAS  Google Scholar 

  • Hanfrey C, Fife M, Buchanan-Wollaston V (1996) Leaf senescence in Brassica napus: expression of genes encoding pathogenesis related proteins. Plant Mol Biol 30:597–609

    Article  PubMed  CAS  Google Scholar 

  • Henderson CB (1976) Maize research and breeders manual, no. 8. Illinois Foundation Seeds Inc, Champaign

    Google Scholar 

  • Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, Cheng JC, Robey J, Sung ZR, De Vries SC, Ogas J (2004) PICKLE Acts throughout the plant to repress expression of embryogenic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134:995–1005

    Article  PubMed  CAS  Google Scholar 

  • Horikawa S, Sasuga J, Shimizu K, Ozasa H, Tsukada K (1990) Molecular cloning and nucleotide sequence of cDNA encoding the rat kidney S-adenosylmethionine synthetase. J Biol Chem 265:13683–13686

    PubMed  CAS  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6- benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260

    Article  PubMed  CAS  Google Scholar 

  • Jiménez VM, Bangerth F (2001) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Sci 160:247–257

    Article  PubMed  Google Scholar 

  • Kim YO, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J 42:890–900

    Article  PubMed  CAS  Google Scholar 

  • Ledwoń A, Gaj MD (2009) LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Rep 28:1677–1688

    Article  PubMed  Google Scholar 

  • Lin HC, Morcillo F, Dussert S, Tranchant-Dubreuil C, Tregear JW, Tranbarger TJ (2009) Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development. Plant Mol Biol 70:173–192

    Article  PubMed  CAS  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Malerba M, Contran N, Tonelli M, Crosti P, Cerana R (2008) Role of nitric oxide in actin depolymerization and programmed cell death induced by fusicoccin in sycamore (Acer pseudoplatanus) cultured cells. Physiol Plant 133:449–457

    Article  PubMed  CAS  Google Scholar 

  • Maraschin SF, Priester W, Spaink HP, Wang M (2005) Androgenetic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  PubMed  CAS  Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    Article  PubMed  CAS  Google Scholar 

  • Massonneau A, Coronado MJ, Audrana A, Bagniewska A, Mòl R, Testillano PS, Goralskid G, Dumas C, Risueño MC, Matthys-Rochon E (2005) Multicellular structures developing during maize microspore culture express endosperm and embryo-specific genes and show different embryogenic potentialities. Eur J Cell Bio 84:663–675

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Moiseyev GP, Fedoreyeva LI, Zhuravlev YN, Yasnetskaya E, Jekel PA, Beintema JJ (1997) Primary structures of two ribonucleases from ginseng calluses. New members of the PR-10 family of intracellular pathogenesis-related plant proteins. FEBS Lett 407:207–210

    Article  PubMed  CAS  Google Scholar 

  • Müller K, Job C, Belghazi M, Job D, Leubner-Metzger G (2010) Proteomics reveal tissue-specific features of the cress (Lepidium sativum L.) endosperm cap proteome and its hormone-induced changes during seed germination. Proteomics 10:406–416

    Article  PubMed  Google Scholar 

  • Mur LA, Sturgess FJ, Farrell GG, Draper J (2004) The AoPR10 promoter and certain endogenous PR10 genes respond to oxidative signals in Arabidopsis. Mol Plant Pathol 5:435–451

    Article  PubMed  CAS  Google Scholar 

  • Natarajan S, Xu C, Caperna T, Garrett W (2005) Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Anal Biochem 342:214–220

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryogenic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Pan ZY, Guan R, Zhu SP, Deng XX (2009) Proteomic analysis of somatic embryogenesis in valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289

    Article  PubMed  Google Scholar 

  • Pérez-Núñez MT, Souza R, Sáenz L, Chan JL, Zúñiga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19

    Article  PubMed  Google Scholar 

  • Ptak A, El Tahchy A, Wyzgolik G, Henry M, Laurain Mattar D (2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tissue Organ Cult 102:61–67

    Article  CAS  Google Scholar 

  • Qi YC, Wang FF, Zhang H, Liu WQ (2010) Overexpression of Suadea Salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco. Acta Physiol Plant 32:263–269

    Article  CAS  Google Scholar 

  • Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N (2011) Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–736

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Gakière B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805–7812

    Article  PubMed  CAS  Google Scholar 

  • Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:20

    Article  PubMed  Google Scholar 

  • Schlögl PS, Santos ALW, Vieira LN, Floh EIS, Guerra MP (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tissue Organ Cult 108:173–180

    Article  Google Scholar 

  • Sghaier-Hammami B, Drira N, Jorrín-Novo JV (2009) Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. Proteomics 73:161–177

    Article  PubMed  CAS  Google Scholar 

  • Shohael AM, Ali MB, Hahn EJ (2007) Glutathione metabolism and antioxidant responses during Eleutherococcus senticosus somatic embryo development in a bioreactor. Plant Cell Tissue Organ Cult 89:121–129

    Article  CAS  Google Scholar 

  • Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh EIS (2012) A gymnosperm homolog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tissue Organ Cult 109:41–50

    Article  CAS  Google Scholar 

  • Stone SL, Braybrook SA, Paula S, Kwon LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg B, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryogenic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460

    Article  PubMed  CAS  Google Scholar 

  • Surabhi GK, Reddy AM, Jyothsnakumari G, Sudhakar C (2008) Modulation of key enzymes of nitrogen metabolism in two genotypes of mulberry (Morus alba L.) with differential sensitivity to salt stress. Environ Exp Bot 64:171–179

    Article  CAS  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  PubMed  CAS  Google Scholar 

  • Tan EC, Karsani SA, Foo GT, Wong SM, Rahman NA, Khalid N, Othman S, Yusof R (2012) Proteomic analysis of cell suspension cultures of Boesenbergia rotunda induced by phenylalanine: identification of proteins involved in flavonoid and phenylpropanoid biosynthesis pathways. Plant Cell Tissue Organ Cult 111:219–229

    Article  CAS  Google Scholar 

  • Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin JP, Dedaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847

    Article  PubMed  CAS  Google Scholar 

  • van Eldik GJ, Wingens M, Ruiter RK, Van Herpen MMA, Schrauwen JAM, Wullems GJ (1996) Molecular analysis of a pistil-specific gene expressed in the stigma and stylar cortex of Solanum tuberosum. Plant Mol Biol 30:171–176

    Article  PubMed  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    Article  PubMed  CAS  Google Scholar 

  • Visarada KBRS, Sailaja M, Sarma NP (2002) Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Bio Life Sci 45:495–502

    CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Ann Rev Biochem 68:1015–1068

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Weng ZX, Cheng CL, Liu H, Liang WY, Jiang JM, Chen W (2010) Identification and analysis of differentially expressed proteins during cotyledon embryo stage in longan. Sci Hortic 126:426–433

    Article  CAS  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. BBA-Protein Proteom 1699:35–44

    CAS  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Winkelmann T, Heintz D, Dorsselaer AV, Serek M, Braun HP (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    Article  PubMed  CAS  Google Scholar 

  • Wu XM, Li FG, Zhang CJ, Liu CL, Zhang XY (2009) Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis. J Plant Physiol 166:1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Tao Y, Zhao K, Shao J, Li XB, Liu GZ, Liu SQ, Zhu LH (2007) Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation. Proteomics 7:755–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang JW, Ma HQ, Chen S, Ji M, Perl A, Kovacs L, Chen SW (2009) Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon—A proteomic approach. Plant Sci 177:103–113

    Article  CAS  Google Scholar 

  • Zhang SZ, Liu XG, Lin YA, Xie GN, Fu FL, Liu HL, Wang J, Gao SB, Lan H, Rong TZ (2010) Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture. Plant Cell Tissue Organ Cult 105:29–37

    Article  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plant. Plant Cell 5:1411–1423

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National S&T Major Projects—Breeding of New Varieties for Transgenic Biology of China (2009ZX08003-024B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Yuan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Wu, Y., Zou, H. et al. Comparative proteomic analysis of the H99 inbred maize (Zea mays L.) line in embryogenic and non-embryogenic callus during somatic embryogenesis. Plant Cell Tiss Organ Cult 113, 103–119 (2013). https://doi.org/10.1007/s11240-012-0255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0255-1

Keywords

Navigation