Skip to main content
Log in

Theoretic design of 1,2,3,4-tetrazine-1,3-dioxide-based high-energy density compounds with oxygen balance close to zero

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of 1,2,3,4-tetrazine-1,3-dioxide derivatives with different substituents and bridge groups. It is found that the groups –NO2, –C(NO2)3, and –N=N– play a very important role in increasing the HOFs of the derivatives. The effects of the substituents on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels and HOMO–LUMO gaps are coupled to those of different substituents and bridges. The calculated detonation velocities and pressures indicate that the group –NO2, –NF2, –ONO2, –C(NO2)3, or –NH– is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds indicates that incorporating the groups –NO2, –NF2, –ONO2, –C(NO2)3, and –N=N– into parent ring decreases their thermal stability. Considering the detonation performance and thermal stability, 18 compounds may be considered as the target compounds holding the greatest potential for synthesis and use as high-energy density compounds. Among them, the oxygen balances of four compounds are equal to zero. These results provide basic information for the molecular design of the novel high-energy compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  2. Qiu L, Xiao HM (2009) J Hazard Mater 164:329–336

    Article  CAS  Google Scholar 

  3. Turker L, Varis S (2009) Polycycl Aromat Compd 29:228–266

    Article  CAS  Google Scholar 

  4. Prabhakaran KV, Bhide NM, Kurian EM (1995) Thermochim Acta 249:249–258

    Article  CAS  Google Scholar 

  5. Ravi P, Gore GM, Tewari SP, Sikder AK (2010) J Mol Struct Theochem 955:171–177

    Article  CAS  Google Scholar 

  6. Qiu L, Zhu WH, Xiao JJ, Zhu W, Xiao HM, Huang H, Li JS (2007) J Phys Chem B 111:1559–1566

    Article  CAS  Google Scholar 

  7. Ravi P, Gore GM, Tewari SP, Sikder AK (2011) Int J Quantum Chem 111:4352–4362

    Article  CAS  Google Scholar 

  8. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) J Hazard Mater 161:589–607

    Article  CAS  Google Scholar 

  9. Xu XJ, Zhu WH, Xiao HM (2007) J Phys Chem B 111:2090–2097

    Article  CAS  Google Scholar 

  10. Zhang JJ, Gao HW, Wei T, Wang CJ (2010) Acta Phys Chim Sin 26:3337–3344

    CAS  Google Scholar 

  11. Wei T, Zhu WH, Zhang XW, Li YF, Xiao HM (2009) J Phys Chem A 113:9404–9412

    Article  CAS  Google Scholar 

  12. Wei T, Zhu WH, Zhang JJ, Xiao HM (2010) J Hazard Mater 179:581–590

    Article  CAS  Google Scholar 

  13. Tyurin AY, Churakov AM, Strelenko YA, Ratnikov MO, Tartakovsky VA (2006) Russ Chem Bull 55:1648–1653

    Article  CAS  Google Scholar 

  14. Frumkin AE, Churakov AM, Strelenko YA, Tartakovsky VA (2006) Russ Chem Bull 55:1654–1658

    Article  CAS  Google Scholar 

  15. Frumkin AE, Churakov AM, Strelenko YA, Tartakovsky VA (2000) Russ Chem Bull 49:482–486

    Article  CAS  Google Scholar 

  16. Muthurajan H, Sivabalan R, Talawar MB, Anniyappan M, Venugopalan S (2006) J Hazard Mater 133:30–45

    Article  CAS  Google Scholar 

  17. Zhu WX, Wong NB, Wang WZ, Zhou G, Tian A (2004) J Phys Chem A 108:97–106

    Article  Google Scholar 

  18. Zhu WH, Zhang CC, Wei T, Xiao HM (2011) Struct Chem 22:149–159

    Article  Google Scholar 

  19. Pan Y, Li JS, Cheng BB, Zhu WH, Xiao HM (2012) Comput Theor Chem 992:110–119

    Article  CAS  Google Scholar 

  20. Wang F, Wang GX, Du HC, Zhang JJ, Gong XD (2011) J Phys Chem A 115:13858–13864

    Article  CAS  Google Scholar 

  21. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) J Phys Chem A 110:5929–5933

    Article  CAS  Google Scholar 

  22. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) J Phys Chem A 110:3797–3807

    Article  CAS  Google Scholar 

  23. Zeng Z, Gao H, Twamley B, Shreeve JM (2007) J Mater Chem 17:3819–3826

    Article  CAS  Google Scholar 

  24. Thottempudi V, Gao HX, Shreeve JM (2011) J Am Chem Soc 133:6464–6471

    Article  CAS  Google Scholar 

  25. Chavez D, Hiskey M (2009) J Energy Mater 17:357–377

    Article  Google Scholar 

  26. Zhu WH, Zhang CC, Wei T, Xiao HM (2011) J Comput Chem 32:2298–2312

    Article  CAS  Google Scholar 

  27. Zhang XW, Zhu WH, Xiao HM (2010) J Phys Chem A 114:603–612

    Article  CAS  Google Scholar 

  28. Fan XW, Ju XH (2008) J Comput Chem 29:505–513

    Article  CAS  Google Scholar 

  29. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  30. Wei T, Zhang JJ, Zhu WH, Zhang XW, Xiao HM (2010) J Mol Struct Theochem 956:55–60

    Article  CAS  Google Scholar 

  31. Atkins PW (1982) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  32. Politzer P, Lane P, Murray JS (2011) Cent Eur J Energy Mat 8:39–52

    CAS  Google Scholar 

  33. Politzer P, Murray JS (2011) Cent Eur J Energy Mat 8:209–220

    CAS  Google Scholar 

  34. Byrd EFC, Rice BM (2006) J Phys Chem A 110:1005–1013

    Article  CAS  Google Scholar 

  35. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  36. Jaidann M, Roy S, Abou-Rachid H, Lussier LS (2010) J Hazard Mater 176:165–173

    Article  CAS  Google Scholar 

  37. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  38. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  39. Benson SW (1976) Thermochemical kinetics. Wiley, New York

    Google Scholar 

  40. Mills I, Cvitas T, Homann K, Kallay N, Kuchitsu K (1988) Quantities, units, and symbols in physical chemistry. Blackwell Scientific Publications, Oxford

    Google Scholar 

  41. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255–263

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko, A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, revision A. 01. Gaussian, Inc., Wallingford

  43. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill Book Co., New York

    Google Scholar 

  44. Afeefy HY, Liebman JF, Stein SE (2000) Neutral thermochemical data. In: Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg. http://webbook.nist.gov

  45. Chung GS, Schmidt MW, Gordon MS (2000) J Phys Chem A 104:5647–5650

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21273115) and the Fundamental Research Funds for the Central Universities (No. NUST2011YBXM08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Pan, Y., Xia, X. et al. Theoretic design of 1,2,3,4-tetrazine-1,3-dioxide-based high-energy density compounds with oxygen balance close to zero. Struct Chem 24, 1579–1590 (2013). https://doi.org/10.1007/s11224-012-0190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0190-0

Keywords

Navigation