Skip to main content
Log in

Theoretical studies of furoxan-based energetic nitrogen-rich compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory calculations were performed to study the effects of different substituents and nitrogen-containing heterocyclic rings on the heats of formation (HOFs), energetic properties, and thermal stability for a series of furoxan derivatives. The isodesmic reaction method was employed to calculate the HOFs of the derivatives using total energies obtained from electronic structure calculations. The detonation velocities and pressures were evaluated by using the semiempirical Kamlet–Jacobs equations, based on the theoretical densities and HOFs. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the furoxan derivatives. These results provide basic information for the molecular design of novel high energy density materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gasco A, Boulton AJ (1981) Advances in heterocyclic chemistry. Academic Press, New York, pp 251–340

    Google Scholar 

  2. Olofson RA, Michelman JS (1964) J Am Chem Soc 86:1863

    Article  CAS  Google Scholar 

  3. Olofson RA, Michelman JS (1965) J Org Chem 30:1854

    Article  CAS  Google Scholar 

  4. Godovikova TI, Golova SP, Streienko YA, Antipin MY, Struchkov YT, Khmelnitskii LI (1994) Mendeleev Commun 4:7

    Article  Google Scholar 

  5. Sheremetev AB, Makhova NN, Friedrichsen W (2001) Advances in heterocyclic chemistry. Academic Press, New York, pp 65–188

    Google Scholar 

  6. Vichard D, Hallé JC, Huguet B, Pouet MJ, Riou D, Terrier F (1998) Chem Commun 1998:791

    Article  Google Scholar 

  7. Rauhut G (1996) J Comput Chem 17:1848

    CAS  Google Scholar 

  8. Friedrichsen W (1994) J Phys Chem 98:12933

    Article  CAS  Google Scholar 

  9. Britton D, Noland WE, Clark CM (2008) Acta Crystallogr C 64:o187

    Article  Google Scholar 

  10. Ojala CR, Ojala WH, Britton D, Gougoutas JZ (1999) Acta Crystallogr B 55:530

    Article  Google Scholar 

  11. Ermondi G, Visentin S, Boschi D, Fruttero R, Gasco A (2000) J Mol Struct 523:149

    Article  CAS  Google Scholar 

  12. Miao YL, Zhang TL, Qiao XJ, Zhang JG, Yu KB (2004) Chin J Org Chem 24:205

    CAS  Google Scholar 

  13. Wang J, Li J, Liang Q, Huang Y, Dong H (2008) Propellants Explos Pyrotech 33:347

    Article  CAS  Google Scholar 

  14. Monique B-F, Séverine V, Robert F, Ming Wah W, Hervé B, Colin HLK, Curt W (2000) J Chem Soc Perkin Trans 2(2000):473

    Google Scholar 

  15. Sheremetev AB, Ivanova EA, Spiridonova NP, Melnikova SF, Tselinsky IV, Suponitsky KY, Antipin MY (2005) J Heterocycl Chem 42:1237

    Article  CAS  Google Scholar 

  16. Golovina NI, Titkov AN, Raevskii AV, Atovmyan LO (1994) J Solid State Chem 113:229

    Article  CAS  Google Scholar 

  17. Kamenar B, Prout CK (1965) J Chem Soc 4838

  18. Ammon HL, Bhattacharjee SK (1982) Acta Crystallogr B 38:2498

    Article  Google Scholar 

  19. Pivina TS, Sukhachev DV, Evtushenko AV, Khmelnitskii LI (1995) Propellants Explos Pyrotech 20:5

    Article  CAS  Google Scholar 

  20. Wang J, Dong HS, Huang YG, Li JS (2006) Acta Chim Sin 64:158

    CAS  Google Scholar 

  21. Sheremetev AB, Shatunova EV, Averkiev BB, Dmitriev DE, Petukhov VA, Antipin MY (2004) Heteroat Chem 15:131

    Article  CAS  Google Scholar 

  22. Averkiev BB, Timofeeva TV, Sheremetev AB, Shatunova EV, Antipin MY (2004) Acta Crystallogr C 60:o520

    Article  Google Scholar 

  23. Churakov A, Smirnov O, Ioffe S, Strelenko Y, Tartakovsky V (2002) Eur J Org Chem 2002:2342

    Article  Google Scholar 

  24. Terrier F, Sebban M, Goumont R, Halle JC, Moutiers G, Cangelosi I, Buncel E (2000) J Org Chem 65:7391

    Article  CAS  Google Scholar 

  25. Richardson C, Steel PJ (2000) Aust J Chem 53:93

    Article  CAS  Google Scholar 

  26. Pasinszki T, Westwood NPC (1995) J Am Chem Soc 117:8425

    Article  CAS  Google Scholar 

  27. Všetečka V, Fruttero R, Gasco A, Exner O (1994) J Mol Struct 324:277

    Article  Google Scholar 

  28. Sillitoe AK, Harding MM (1978) Acta Crystallogr B 34:2021

    Article  Google Scholar 

  29. Sliwa W, Thomas A (1985) Heterocycles 23:399

    Article  CAS  Google Scholar 

  30. Godovikova TI, Rakitin OA, Golova SP, Vozchikova SA, Khmelnitskii LI (1993) Mendeleev Commun 3:209

    Article  Google Scholar 

  31. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187

    Article  CAS  Google Scholar 

  32. Pasinszki T, Westwood NPC (1998) J Phys Chem A 102:4939

    Article  CAS  Google Scholar 

  33. Guntram R, Hans-Joachim W (2003) Phys Chem Chem Phys 5:2001

    Google Scholar 

  34. Rauhut G, Pulay P (1995) J Phys Chem 99:3093

    Article  CAS  Google Scholar 

  35. Pasinszki T, Havasi B, Hajgató B, Westwood NPC (2009) J Phys Chem A 113:170

    Article  CAS  Google Scholar 

  36. Selmi M, Tomasi J (1995) J Phys Chem 99:5894

    Article  CAS  Google Scholar 

  37. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062

    Article  CAS  Google Scholar 

  38. Xiao HM, Chen ZX (2000) The modern theory for tetrazole chemistry, 1st edn. Science Press, Beijing

    Google Scholar 

  39. Chen PC, Chieh YC, Tzeng SC (2003) J Mol Struct: THEOCHEM 634:215

    Article  CAS  Google Scholar 

  40. Jursic BS (2000) J Mol Struct: THEOCHEM 499:137

    Article  CAS  Google Scholar 

  41. Dill JD, Greenberg A, Liebman JF (1979) J Am Chem Soc 101:6814

    Article  CAS  Google Scholar 

  42. Hahre WJ, Radom L, Schleyer PVR, Pole JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  43. Xu X-J, Xiao H-M, Ju X-H, Gong X-D, Zhu W-H (2006) J Phys Chem A 110:5929

    Article  CAS  Google Scholar 

  44. Wei T, Zhu WH, Zhang XW, Li YF, Xiao HM (2009) J Phys Chem A 113:9404

    Article  CAS  Google Scholar 

  45. Zhang XW, Zhu WH, Xiao HM (2010) J Phys Chem A 114:603

    Article  CAS  Google Scholar 

  46. Zhang XW, Zhu WH, Xiao HM (2010) Int J Quantum Chem 110:1549

    Article  CAS  Google Scholar 

  47. Wei T, Zhang JJ, Zhu WH, Zhang XW, Xiao HM (2010) J Mol Struct: THEOCHEM 956:55

    Article  CAS  Google Scholar 

  48. Lide DR (2004) Handbook of chemistry and physics, 84th edn. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  49. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

    Article  CAS  Google Scholar 

  50. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2007) J Hazard Mater 141:280

    Article  CAS  Google Scholar 

  51. Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  52. Mills I, Cvitas T, Homann K, Kallay N, Kuchitsu K (1988) Quantities, units and symbols in physical chemistry. Blackwell Scientific Publications, Oxford

    Google Scholar 

  53. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255

    Article  CAS  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB et al (2003) Gaussian 03, Revision B.03. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  55. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976

    Article  CAS  Google Scholar 

  56. Binning RC Jr, Curtiss LA (1990) J Comput Chem 11:1206

    Article  CAS  Google Scholar 

  57. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  58. Tibor P, George F, Nicholas PCW (1996) J Chem Soc Perkin Trans 2(1996):179

    Google Scholar 

  59. Rice BM, Sahu S, Owens FJ (2002) J Mol Struct: THEOCHEM 583:69

    Article  CAS  Google Scholar 

  60. Owens FJ (1996) J Mol Struct: THEOCHEM 370:11

    Article  CAS  Google Scholar 

  61. Klenke B, Friedrichsen W (1998) J Mol Struct: THEOCHEM 451:263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSAF Foundation of National Natural Science Foundation of China and China Academy of Engineering Physics (Grant No. 10876013) and the Specialized Research Fund for the Doctoral Program of Higher Education (200802881043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Zhang, C., Wei, T. et al. Theoretical studies of furoxan-based energetic nitrogen-rich compounds. Struct Chem 22, 149–159 (2011). https://doi.org/10.1007/s11224-010-9696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9696-5

Keywords

Navigation