Skip to main content

Advertisement

Log in

Computational insight into polynitromethyl- and polydifluoroaminomethyl-substituted energetic derivatives of 2,3-dihydro pyrazino [2,3-e] [1, 2, 3, 4] tetrazine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of energetic polynitromethyl and polynitromethyl substituents were designed and then incorporated into 2,3-dihydro pyrazino [2,3-e] [1, 2, 3, 4] tetrazine molecule. The heat of formations, frontier molecular orbitals, electronic densities, electrostatic potentials, thermal stability, and impact sensitivity of the designed compounds were predicted by density functional theory. Most of the title compounds possess excellent comprehensive performance, that is, large densities (1.90 to 2.35 g cm−3), high detonation velocities (9.00 to 13.02 km s−1), and high detonation pressures (40.00 to 85.41 GPa). Due to their good detonation properties, suitable thermal stability, and other properties, 10 compounds (A2, A3, A6, B3, B6, C6, D3, D6, E3, and E6) were screened as the potential high-energy density compounds. The results and the ideas of molecular design proposed in this work are expected to assist the experimental researchers in the synthesis of new fluorine- and oxygen-rich high-energy density compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45(22):3584–3601

    CAS  Google Scholar 

  2. Gao H, Shreeve JM (2011) Azole-based energetic salts. Chem Rev 111(11):7377–7436

    CAS  PubMed  Google Scholar 

  3. Wang Q, Feng X, Wang S, Song N, Chen Y, Tong W, Han Y, Yang L, Wang B (2016) Metal-organic framework templated synthesis of copper azide as the primary explosive with low electrostatic sensitivity and excellent initiation ability. Adv Mater 28(28):5837–5843

    CAS  PubMed  Google Scholar 

  4. Hu L, Yin P, Zhao G, He C, Imler GH, Parrish DA, Gao H, Shreeve JM (2018) Conjugated energetic salts based on fused rings: insensitive and highly dense materials. J Am Chem Soc 140(44):15001–15007

    CAS  PubMed  Google Scholar 

  5. Fischer D, Klapötke TM, Stierstorfer J (2014) Potassium 1, 1′-dinitramino-5, 5′-bistetrazolate: a primary explosive with fast detonation and high initiation power. Angew Chem Int Ed 53(31):8172–8175

    CAS  Google Scholar 

  6. Tang Y, Zhang J, Mitchell LA, Parrish DA, Shreeve JM (2015) Taming of 3, 4-Di (nitramino) furazan. J Am Chem Soc 137(51):15984–15987

    CAS  PubMed  Google Scholar 

  7. Snyder CJ, Wells LA, Chavez DE, Imler GH, Parrish DA (2019) Polycyclic N-oxides: high performing, low sensitivity energetic materials. Chem Commun 55(17):2461–2464

    CAS  Google Scholar 

  8. Fei T, Du Y, Pang S (2018) Theoretical design and prediction of properties for dinitromethyl, fluorodinitromethyl, and (difluoroamino) dinitromethyl derivatives of triazole and tetrazole. RSC Adv 8(19):10215–10227

    CAS  Google Scholar 

  9. Fan XW, Ju XH (2008) Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2 groups. J Comput Chem 29(4):505–513

    CAS  PubMed  Google Scholar 

  10. Li Y-F, Fan X-W, Wang Z-Y, Ju X-H (2009) A density functional study of substituted pyrazole derivatives. J Mol Struct THEOCHEM 896(1–3):96–102

    CAS  Google Scholar 

  11. Wei T, Zhu W, Zhang X, Li Y-F, Xiao H (2009) Molecular design of 1, 2, 4, 5-tetrazine-based high-energy density materials. J Phys Chem A 113(33):9404–9412

    CAS  PubMed  Google Scholar 

  12. Zhang X, Zhu W, Xiao H (2009) Comparative theoretical studies of energetic substituted carbon-and nitrogen-bridged difurazans. J Phys Chem A 114(1):603–612

    Google Scholar 

  13. Ravi P, Gore G, Venkatesan V, Tewari SP, Sikder A (2010) Theoretical studies on the structure and detonation properties of amino-, methyl-, and nitro-substituted 3, 4, 5-trinitro-1H-pyrazoles. J Hazard Mater 183(1–3):859–865

    CAS  PubMed  Google Scholar 

  14. Liu Y, Gong X, Wang L, Wang G, Xiao H (2011) Substituent effects on the properties related to detonation performance and sensitivity for 2, 2′, 4, 4′, 6, 6′-hexanitroazobenzene derivatives. J Phys Chem A 115(9):1754–1762

    CAS  PubMed  Google Scholar 

  15. Pan Y, Zhu W, Xiao H (2012) Design and selection of nitrogen-rich bridged di-1, 3, 5-triazine derivatives with high energy and reduced sensitivity. J Mol Model 18(7):3125–3138

    CAS  PubMed  Google Scholar 

  16. Ullah Khan R, Zhu W (2019) Theoretical studies on energetic nitrogen-rich heterocyclic substituted derivatives of pyrazino [2, 3-e] [1, 2, 3, 4] tetrazine-1, 3-di-N-oxide. ChemistrySelect 4(46):13646–13655

    CAS  Google Scholar 

  17. Wei T, Zhu W, Zhang J, Xiao H (2010) DFT study on energetic tetrazolo-[1, 5-b]-1, 2, 4, 5-tetrazine and 1, 2, 4-triazolo-[4, 3-b]-1, 2, 4, 5-tetrazine derivatives. J Hazard Mater 179(1–3):581–590

    CAS  PubMed  Google Scholar 

  18. Wang F, Du H, Zhang J, Gong X (2011) Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2, 4, 6, 8-tetranitro-1, 3, 5, 7-tetraazacubane as a novel high energy density material. J Phys Chem A 115(42):11788–11795

    CAS  PubMed  Google Scholar 

  19. Ravi P, Gore GM, Sikder AK, Tewari SP (2012) A DFT study on the structure-property relationship of aminonitropyrazole-2-oxides. Int J Quantum Chem 112(6):1667–1677

    CAS  Google Scholar 

  20. Xiang F, Wu Q, Zhu W, Xiao H (2013) Comparative theoretical studies on energetic ionic salts composed of heterocycle-functionalized nitraminofurazanate-based anions and triaminoguanidinium cation. J Chem Eng Data 59(2):295–306

    Google Scholar 

  21. Wu Q, Zhu W, Xiao H (2014) A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3 N-oxide. J Mater Chem A 2(32):13006–13015

    CAS  Google Scholar 

  22. Deswal S, Ghule VD, Kumar TR, Radhakrishnan S (2015) Quantum-chemical design of tetrazolo [1, 5-b][1, 2, 4, 5] tetrazine based nitrogen-rich energetic materials. Comput Theor Chem 1054:55–62

    CAS  Google Scholar 

  23. He P, Zhang J-G, Wang K, Yin X, Jin X, Zhang T-L (2015) Extensive theoretical studies on two new members of the FOX-7 family: 5-(dinitromethylene)-1, 4-dinitramino-tetrazole and 1, 1′-dinitro-4, 4′-diamino-5, 5′-bitetrazole as energetic compounds. Phys Chem Chem Phys 17(8):5840–5848

    CAS  PubMed  Google Scholar 

  24. Pan Y, Zhu W (2018) Designing and looking for novel cage compounds based on bicyclo-HMX as high energy density compounds. RSC Adv 8(1):44–52

    CAS  Google Scholar 

  25. Yang J, Gong X, Mei H, Li T, Zhang J, Gozin M (2018) Design of zero oxygen balance energetic materials on the basis of Diels–Alder chemistry. J Org Chem 83(23):14698–14702

    CAS  PubMed  Google Scholar 

  26. Khan RU, Zhu S, Zhu W (2019) DFT studies on nitrogen-rich pyrazino [2, 3-e] [1, 2, 3, 4] tetrazine-based high-energy density compounds. J Mol Model 25(9):283

    PubMed  Google Scholar 

  27. Yang J, Yan H, Wang G, Zhang X, Wang T, Gong X (2014) Computational investigations into the substituent effects of–N 3,–NF 2,–NO 2, and–NH 2 on the structure, sensitivity and detonation properties of N, N′-azobis (1, 2, 4-triazole). J Mol Model 20(4):2148

    PubMed  Google Scholar 

  28. Yang J (2015) Theoretical studies on the structures, densities, detonation properties and thermal stability of Tris(triazolo)benzene and its derivatives. Polycycl Aromat Compd 35(5):387–400

    CAS  Google Scholar 

  29. Fei T, Du Y, Chen P, He C, Pang S (2018) N-Fluoro functionalization of heterocyclic azoles: a new strategy towards insensitive high energy density materials. New J Chem 42(19):16244–16257

    CAS  Google Scholar 

  30. Jin X, Xiao M, Zhou G, Zhou J, Hu B (2019) Molecule design and properties of bridged 2, 2-bi (1, 3, 4-oxadiazole) energetic derivatives. RSC Adv 9(10):5417–5430

    CAS  Google Scholar 

  31. Yang J (2015) Theoretical studies on the structures, densities, detonation properties and thermal stability of tris (triazolo) benzene and its derivatives. Polycycl Aromat Compd 35(5):387–400

    CAS  Google Scholar 

  32. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09 package. Gaussian Inc, Pittsburgh

    Google Scholar 

  33. Ghule V, Jadhav P, Patil R, Radhakrishnan S, Soman T (2010) Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A 114(1):498–503

    CAS  PubMed  Google Scholar 

  34. Zhang X, Zhu W, Wei T, Zhang C, Xiao H (2010) Densities, heats of formation, energetic properties, and thermodynamics of formation of energetic nitrogen-rich salts containing substituted protonated and methylated tetrazole cations: a computational study. J Phys Chem C 114(30):13142–13152

    CAS  Google Scholar 

  35. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first-and second-row compounds. J Chem Phys 94(11):7221–7230

    CAS  Google Scholar 

  36. Ochterski JW, Petersson GA, Montgomery Jr JA (1996) A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J Chem Phys 104(7):2598–2619

    CAS  Google Scholar 

  37. Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E (1997) Calculation of heats of sublimation and solid phase heats of formation. Mol Phys 91(5):923–928

    CAS  Google Scholar 

  38. Byrd EF, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013

    CAS  PubMed  Google Scholar 

  39. Politzer P, Ma Y, Lane P, Concha MC (2005) Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int J Quantum Chem 105(4):341–347

    CAS  Google Scholar 

  40. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101

    CAS  Google Scholar 

  41. Kamlet MJ, Jacobs S (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48(1):23–35

    CAS  Google Scholar 

  42. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1(2):153–163

  43. Zhao G, Lu M (2014) Comparative theoretical studies of high energetic cyclic nitramines. J Phys Org Chem 27(1):10–17

    Google Scholar 

  44. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    PubMed  Google Scholar 

  45. Kettner MA, Karaghiosoff K, Klapötke TM, Sućeska M, Wunder S (2014) 3, 3′-Bi (1, 2, 4-oxadiazoles) featuring the fluorodinitromethyl and trinitromethyl groups. Chem Eur J 20(25):7622–7631

    CAS  PubMed  Google Scholar 

  46. Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21(10):262

    PubMed  Google Scholar 

  47. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants, explosives. Pyrotechnics 41(3):414–425

    CAS  Google Scholar 

  48. Politzer P, Murray JS (2017) High performance, low sensitivity: the impossible (or possible) dream? In: Energetic Materials. Springer, pp 1–22

  49. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Res 36(4):255–263

    CAS  Google Scholar 

  50. Khan RU, Zhu W (2020) Designing and looking for novel low-sensitivity and high-energy cage derivatives based on the skeleton of nonanitro nonaaza pentadecane framework. Struct Chem. https://doi.org/10.1007/s11224-020-01506-y

  51. Zhu W, Zhang C, Wei T, Xiao H (2011) Computational study of energetic nitrogen-rich derivatives of 1, 1′-and 5, 5′-bridged ditetrazoles. J Comput Chem 32(10):2298–2312

    CAS  PubMed  Google Scholar 

  52. Chung G, Schmidt MW, Gordon MS (2000) An ab initio study of potential energy surfaces for N8 isomers. J Phys Chem A 104(23):5647–5650

    CAS  Google Scholar 

  53. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree−Fock, Møller−Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100(41):16502–16513

    CAS  Google Scholar 

  54. Lide D (2004) The 84th edition of the CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  55. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161(2–3):589–607

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21773119) and Science Challenging Program (No. TZ2016001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R.U., Zhu, W. Computational insight into polynitromethyl- and polydifluoroaminomethyl-substituted energetic derivatives of 2,3-dihydro pyrazino [2,3-e] [1, 2, 3, 4] tetrazine. J Mol Model 26, 78 (2020). https://doi.org/10.1007/s00894-020-4346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4346-3

Keywords

Navigation