Skip to main content
Log in

Design and selection of triazole-based compounds with high energetic properties and stabilities

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) was used to study the molecular geometries, electronic structures, heats of formation in gas phase and in condensed phase, energetic properties, and thermal stabilities of triazole derivatives. The results show that the properties are associated with the different substituents and substitution positions in the parent ring. The symmetric structures and hyperconjugation systems both contribute to the thermal stabilities of the triazole derivatives. It is found that the group –N3 is an effective structural unit for improving the gas phase heat of formation. The calculated detonation properties indicate that –NO2, –ONO2, –N3, –NF2, and –CH(NO2)2 groups are very useful for enhancing the detonation velocities and detonation pressures. Thirteen compounds have better detonation properties than that of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane). According to the quantitative data of energy and thermal stability for a nitrogen-rich high energetic compound, 20 out of 56 studied compounds may be considered as potential candidates with enhanced performance and reduced sensitivity.

Density functional theory was used to study the energetic properties and thermal stabilities of the triazole derivatives. Thirteen compounds have better detonation properties than those of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane). Twenty compounds may be considered as potential candidates with enhanced performance and reduced sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Klapotke T M and Witkowski T G 2015 Propell. Explos. Pyrot. 40 366

    Article  Google Scholar 

  2. Fischer D, Klapotke T M and Stierstorfer J 2015 Angew. Chem. Int. Ed. 54 10299

    Article  CAS  Google Scholar 

  3. Yedukondalu N and Vaitheeswaran G 2015 J. Chem. Phys. 143 064508

    Article  CAS  Google Scholar 

  4. Wei H, He C L, Zhang J H and Shreeve J M 2015 Angew. Chem. Int. Ed. 54 9367

    Article  CAS  Google Scholar 

  5. Piercey D G, Chavez D E, Heimsch S, Kirst C, Klapotke T M and Stierstorfer J 2015 Propell. Explos. Pyrot. 40 491

    Article  CAS  Google Scholar 

  6. Wu J T, Zhang J G, Yin X, Cheng Z Y and Xu C X 2015 New J. Chem. 39 5265

    Article  CAS  Google Scholar 

  7. Klapotke T M, Schmid P C, Schnell S and Stierstorfer J 2015 J. Mater. Chem. A 3 2658

    Article  Google Scholar 

  8. Guo Y X, Feng X, Han T Y, Wang S, Lin Z G, Dong Y P and Wang B 2014 J. Am. Chem. Soc. 136 15485

    Article  CAS  Google Scholar 

  9. Becuwe A and Delclos A 1989 Proceedings of the Ninth International Symposium on Detonation (Arlington, VA: Office of the Chief of Naval Research) pp. 1008–1013

  10. Singh G, Kapoor I P S, Tiwari S K and Felix P S 2001 J. Hazard. Mater. 81 67

    Article  CAS  Google Scholar 

  11. Lee J S and Jaw K S 2006 J. Therm. Anal. Calorim. 85 463

    Article  CAS  Google Scholar 

  12. Dippold A A, Klapotke T M, Martin F A and Wiedbrauk S 2012 Eur. J. Inorg. Chem. 2429

  13. Watenberg C, Charrne P and Laval F 1995 Propell. Explos. Pyrot. 20 23

    Article  Google Scholar 

  14. Tang Y X, Gao H X, Parrish D A and Shreeve J M 2015 Chem. Eur. J. 21 11401

    Article  CAS  Google Scholar 

  15. Wu Q, Zhu W H and Xiao H M 2014 J. Mol. Model. 20 2441

    Article  Google Scholar 

  16. Tang Y X, Yang H W, Wu B, Ju X H, Lv C X and Cheng G B 2013 Angew. Chem. Int. Ed. 52 1

    Article  Google Scholar 

  17. Klapotke T M, Schmid P C, Schnell S and Stierstorfer J 2015 Chem. Eur. J. 21 9219

    Article  Google Scholar 

  18. Bian C M, Wang K, Liang L X, Zhang M, Li C and Zhou Z M 2014 Eur. J. Inorg. Chem. 6022

  19. Srinivas D, Ghule V D and Muralidharan K 2014 RSC Adv. 4 7041

    Article  CAS  Google Scholar 

  20. He P, Zhang J G, Wang K, Yin X, Jin X and Zhang T L 2015 Phys. Chem. Chem. Phys. 17 5840

    Article  CAS  Google Scholar 

  21. Li X H and Zhang R Z 2014 J. Chem. Sci. 126 1753

    Article  CAS  Google Scholar 

  22. Zhao G Z and Lu M 2013 J. Mol. Model. 19 3403

    Article  CAS  Google Scholar 

  23. Singh R, Singh H J and Sengupta S K 2015 J. Chem. Sci. 127 1099

    Article  CAS  Google Scholar 

  24. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2010 Gaussian 09, Revision C. 01 (Wallingford, CT: Gaussian Inc.)

  25. Politzer P, Martinez J, Murray J S, Concha M C and Toro-Labbé A 2009 Mol. Phys. 107 2095

    Article  CAS  Google Scholar 

  26. Becke A D 1992 J. Chem. Phys. 97 9173

    Article  CAS  Google Scholar 

  27. Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  28. Zhao G Z and Lu M 2013 Struct. Chem. 24 139

    Article  CAS  Google Scholar 

  29. Vo T T, Zhang J H, Parrish D A, Twamley B and Shreeve J M 2013 J. Am. Chem. Soc. 135 11787

    Article  CAS  Google Scholar 

  30. Atkins P W 1982 In Physical Chemistry 2nd ed. (Oxford: Oxford University Press)

  31. Rice B M, Pai S V and Hare J 1999 Combust. Flame 118 445

    Article  CAS  Google Scholar 

  32. Politzer P, Lane P and Murray J S 2011 Cent. Eur. J. Energetic Mater. 8 39

    CAS  Google Scholar 

  33. Politzer P, Ma Y, Lane P and Concha M C 2005 Int. J. Quantum Chem. 105 341

    Article  CAS  Google Scholar 

  34. Kamlet M J and Jacobs S J 1968 J. Chem. Phys. 48 23

    Article  CAS  Google Scholar 

  35. Zhang X H and Yun Z H 1989 In Explosive Chemistry (Beijing: National Defence Industry Press)

  36. Liu H, Wang F, Wang G X and Gong X D 2012 J. Comput. Chem. 33 1790

    Article  CAS  Google Scholar 

  37. Li J S 2010 J. Phys. Chem. B 114 2198

    Article  CAS  Google Scholar 

  38. Cao X Z, Song T Y and Wang X Q 1987 In Inorganic Chemistry (Beijing: Higher Education Press)

  39. Scott A P and Radom L 1996 J. Phys. Chem. 100 16502

    Article  CAS  Google Scholar 

  40. Dean J A 1999 In Lange’s Handbook of Chemistry 15th ed. (New York: McGraw-Hill)

  41. David R L 2003–2004 In Handbook of Chemistry and Physics 84th ed. (Boca Raton: CRC Press)

  42. Afeefy H Y, Liebman J F and Stein S E 2000 NIST Chemistry WebBook: NIST Standard Reference Database Number 69 (Gaithersburg: National Institute of Standards and Technology)

  43. Yong P, Zhu W H and Xiao H M 2012 J. Mol. Model. 18 3125

    Article  Google Scholar 

  44. Wei T, Zhang J J, Zhu W H, Zhang X W and Xiao H M 2010 J. Struct. Chem.: (THEOCHEM) 956 55

    CAS  Google Scholar 

  45. Huynh M H V, Hiskey M A, Chavez D E, Naud D L and Gilardi R D 2005 J. Am. Chem. Soc. 127 12537

    Article  CAS  Google Scholar 

  46. Chavez D E, Hiskey M A and Gilardi R D 2000 Angew. Chem. Int. Ed. 39 1791

    Article  CAS  Google Scholar 

  47. Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R and Subhananda R 2009 J. Hazard. Mater. 161 589

    Article  CAS  Google Scholar 

  48. Chung G, Schmidt M W and Gordon M S 2000 J. Phys. Chem. A 104 5647

    Article  CAS  Google Scholar 

  49. Xiao H M, Xu X J and Qiu L 2008 In Theoretical Design of High Energy Density Materials (Beijing: Science Press)

Download references

Acknowledgments

This work was supported by the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi and Natural Science Foundation of Shanxi Normal University (Grant No. ZR1504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GUOZHENG ZHAO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZHAO, G., JIA, J. & WU, H. Design and selection of triazole-based compounds with high energetic properties and stabilities. J Chem Sci 128, 1223–1236 (2016). https://doi.org/10.1007/s12039-016-1117-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1117-x

Keywords

Navigation