Skip to main content
Log in

A conserved locus conditioning Soil-borne wheat mosaic virus resistance on the long arm of chromosome 5D in common wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Soil-borne wheat mosaic virus (SBWMV) is considered to be one of the most important diseases in winter wheat regions of the central and southeastern United States. Utilization of resistant cultivars is the most efficient and environmentally friendly means of control. To identify potential quantitative trait loci (QTL) or effective gene(s) for SBWMV resistance, two independent recombinant inbred line populations, Pioneer 26R61/AGS 2000 (PR61/A2000, 178 lines) and AGS 2020/LA 95135 (A2020/LA, 130 lines), were developed. Pioneer 26R61 and AGS 2020 were resistant to SBWMV, and AGS 2000 and LA 95135 were susceptible. Based on the whole genome genotyping for the PR61/A2000 population and targeted mapping of chromosome 5D for the A2020/LA, the same major QTL QSbm.uga-5DL was identified in all environments with highly significant LOD values, explaining up to 62 and 65 % of the total phenotypic variation in the PR61/A2000 and A2020/LA populations, respectively. The location of the resistance QTL coincided with previously published SBCMV resistance genes Sbm1, Sbm Claire and Sbm Tremie on the long arm of chromosome 5D. A conserved locus was therefore proposed for conditioning SBWMV/SBCMV resistance in common wheat. Validation of the QTL using the flanking markers Xbarc177 and Xbarc161 in three cultivars and three elite lines with Pioneer 26R61 in their pedigrees indicated that the markers were suitable for marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden M, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Atkinson RE (1945) Mosaic of wheat in the Carolinas. Plant Dis Rep 29:86

    Google Scholar 

  • Barbosa M, Goulart L, Prestes A, Juliatti F (2001) Genetic control of resistance to soilborne wheat mosaic virus in Brazilian cultivars of Triticum aestivum L. Thell. Euphytica 122:417–422

    Article  Google Scholar 

  • Bass C, Hendley R, Adams MJ, Hammond-Kosack KE, Kanyuka K (2006) The Sbm1 locus conferring resistance to Soil-borne cereal mosaic virus maps to a gene-rich region on 5DL in wheat. Genome 49:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Bayles BB, Clark JA (1954) Classification of wheat varieties grown in the United States in 1949. USDA Tech Bull No. 1083

  • Bayles R, O’Sullivan D, Lea V, Freeman S, Budge G, Walsh K, Henry C (2007) Controlling Soil-borne cereal mosaic virus in the UK by developing resistant wheat cultivars. HGCA Project 2616. HGCA Crop Research News 32: Project Report no. 418

  • Bever WM, Pendleton JW (1954) The effect of soil-borne wheat mosaic on yield of winter wheat. Plant Dis Rep 38:266–267

    Google Scholar 

  • Cadle-Davidson L, Sorrells ME, Gray SM, Bergstrom GC (2006) Identification of small grains genotypes resistant to soilborne wheat mosaic virus. Plant Dis 90:1039–1044

    Article  Google Scholar 

  • Cai W, Peng X, Mang K (1983) Identification of Soil-borne wheat mosaic virus caused wheat mosaic in Shandong province, China. Acta Phytopathol Sin 13:7–12

    Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  PubMed  CAS  Google Scholar 

  • Crowley NA (2010) Quantitative trait loci for agronomic and end-use quality performance and the effect of Soilborne wheat mosaic virus in a hard winter wheat population in Nebraska. University of Nebraska-Lincoln, Ph. D dissertation, DigitalCommons@University of Nebraska-Lincoln

  • Diao A, Chen J, Ye R, Zheng T, Yu S, Antoniw J, Adams M (1999) Complete sequence and genome properties of Chinese wheat mosaic virus, a new furovirus from China. J Gen Virol 80:1141–1145

    PubMed  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Dubey SN, Brown CM, Hooker AL (1970) Inheritance of field reaction to Soil-borne wheat mosaic virus. Crop Sci 10:93–95

    Article  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger P, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucl Acids Res 32:3546–3565

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  CAS  Google Scholar 

  • Gore UR (1963) Registration of Georgia 1123 wheat (Reg. No. 414). Crop Sci 3:371

    Article  Google Scholar 

  • Hall M, Brown-Guedira G, Klatt A, Fritz A (2009) Genetic analysis of resistance to soil-borne wheat mosaic virus derived from Aegilops tauschi. Euphytica 169:169–176

    Article  CAS  Google Scholar 

  • Hao Y, Liu A, Wang Y, Feng D, Gao J, Li X, Liu S, Wang H (2008) Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet 117:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Hariri D, Meyer M (2007) A new furovirus infecting barley in France closely related to the Japanese soil-borne wheat mosaic virus. Eur J Plant Pathol 118:1–10

    Article  CAS  Google Scholar 

  • Hariri D, Courtillot M, Zaoui P, Lapierre H (1987) Multiplication of soilborne wheat mosaic virus (SBWMV) in wheat roots infected by a soil carrying SBWMV and wheat yellow mosaic virus (WYMV). Agronomie 7:789–796

    Article  Google Scholar 

  • Heyne E, Niblett C (1978) Registration of Newton wheat. Crop Sci 18:696

    Article  Google Scholar 

  • Johnson F (1942) Heat inactivation of wheat mosaic virus in soils. Science 95:610

    Article  PubMed  CAS  Google Scholar 

  • Johnson F (1945) Epiphytology of winter wheat mosaic. Ohio J Sci 45:85–96

    Google Scholar 

  • Johnson JW, Barnett RD, Cunfer BM, Buntin GD, Bland DE (2002) Registration of ‘AGS 2000’ wheat. Crop Sci 42:661

    Article  Google Scholar 

  • Johnson J, Buck J, Buntin G, Chen Z (2008) Contributions by Georgia experiment station, University of Georgia. Annu Wheat Newsl 54:156–158

    Google Scholar 

  • Kanyuka K, Ward E, Adams MJ (2003) Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol Plant Pathol 4:393–406

    Article  PubMed  CAS  Google Scholar 

  • Kanyuka K, Lovell DJ, Mitrofanova OP, Hammond-Kosack K, Adams MJ (2004) A controlled environment test for resistance to Soil-borne cereal mosaic virus (SBCMV) and its use to determine the mode of inheritance of resistance in wheat cv. Cadenza and for screening Triticum monococcum genotypes for sources of SBCMV resistance. Plant Pathol 53:154–160

    Article  Google Scholar 

  • Kapooria RG, Ndunguru J, Clover GRG (2000) First reports of Soilborne wheat mosaic virus and Wheat spindle streak mosaic virus in Africa. Plant Dis 84:921

    Article  Google Scholar 

  • Kastirr U, Wortmann H, Ehrig F (2006) Untersuchungen zum Infektionsverlauf und zur biologischen Differenzierung von bodenbürtigen Viren in Roggen, Triticale und Weizen. Gesunde Pflanzen 58:231–238

    Article  Google Scholar 

  • Knott DR, McIntosh RA (1978) Inheritance of stem rust resistance in ‘Webster’ wheat. Crop Sci 18:365–369

    Article  Google Scholar 

  • Koehler B, Bever WM, Bonnett OT (1952) Soil-borne wheat mosaic. University of Illinois Agricultural Experiment Station in cooperation with U.S. Dept. of Agriculture. Bulletin 556:565–599

    Google Scholar 

  • Koenig R, Huth W (2000) Soil-borne rye mosaic and European wheat mosaic virus: two names for a furovirus with variable genome properties which is widely distributed in several cereal crops in Europe. Arch Virol 145:689–697

    Article  PubMed  CAS  Google Scholar 

  • Koenig R, Huth W (2003) Natural infection of wheat by the type strain of Soil-borne wheat mosaic virus in a field in Southern Germany. Eur J Plant Pathol 109:191–193

    Article  CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Kucharek TA, Walker JH (1974) The presence of and damage caused by soilborne wheat mosaic virus in Florida. Plant Dis Rep 58:763–765

    Google Scholar 

  • Kühne T (2009) Soil-borne viruses affecting cereals–Known for long but still a threat. Virus Res 141:174–183

    Article  PubMed  Google Scholar 

  • Lebas BSM, Ochoa-Corona FM, Elliott DR, Tang J, Blouin AG, Timudo OE, Ganev S, Alexander BJR (2009) Investigation of an outbreak of Soil-borne wheat mosaic virus in New Zealand. Australas Plant Pathol 38:85–90

    Article  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing linkage maps with MAPMAKER/Exp version 3.0. A tutorial reference manual, 3rd edn. Whitehead Institute for Medical Res., Cambridge

  • Lyons R, Hammond-Kosack KE, Kanyuka K (2008) Identification and characterization of a novel efficient resistance response to the Furoviruses SBWMV and SBCMV in barley. Mol Plant Microbe Interact 21:1193–1204

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Ratti C, Rubies-Autonell C, Vallega V, Demontis A, Stefanelli S, Tuberosa R, Sanguineti M (2011) Resistance to Soil-borne cereal mosaic virus in durum wheat is controlled by a major QTL on chromosome arm 2BS and minor loci. Theor Appl Genet 123:527–544

    Article  PubMed  CAS  Google Scholar 

  • McKinney HH (1923) Investigations on the rosette disease of wheat and its control. J Agric Res 23:771–800

    Google Scholar 

  • McKinney HH, Eckerson SH, Webb RW (1923) The intracellular bodies associated with the rosette disease and a mosaiclike leaf mottling of wheat. J Agric Res 26:605–608

    Google Scholar 

  • Merkle OG, Smith EL (1983) Inheritance of resistance to soil borne mosaic in wheat. Crop Sci 23:1075–1076

    Article  Google Scholar 

  • Miller N, Bergstrom G, Gray S (1991) Identity, prevalence, and distribution of viral diseases of winter wheat in New York in 1988 and 1989. Plant Dis 75:1105–1109

    Article  Google Scholar 

  • Miranda L, Murphy J, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  PubMed  CAS  Google Scholar 

  • Miyake M (1938) Mendelian inheritance of resistance to mosaic disease in wheat varieties. Jpn J Genet 14:239–242

    Article  Google Scholar 

  • Miyanishi M, Roh S, Yamamiya A, Ohsato S, Shirako Y (2002) Reassortment between genetically distinct Japanese and US strains of Soil-borne wheat mosaic virus: RNA1 from a Japanese strain and RNA2 from a US strain make a pseudorecombinant virus. Arch Virol 147:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Modawi RS, Heyne EG, Brunetta D, Willis WG (1982) Genetic studies of field reaction to wheat soilborne mosaic virus. Plant Dis 66:1183–1184

    Article  Google Scholar 

  • Moseman JG, McKinny HH, Roane CW (1954) Reaction of wheat varieties and selections to the soil-borne viruses in southeastern United States. Plant Dis Rep 38:19–24

    Google Scholar 

  • Myers LD, Sherwood JL, Siegerist WC, Hunger RM (1993) Temperature-influenced virus movement in expression of resistance to soilborne wheat mosaic virus in hard red winter wheat (Triticum aestivum). Phytopathol 83:548–551

    Article  Google Scholar 

  • Nakagawa M-O, Soga Y, Okazima N, Yoshioka A, Nisimata D (1958) Genetical studies to wheat mosaic virus. 1. Genes affecting the inheritance of susceptibility to strains of green mosaic virus in the varietal crosses of wheat. Jpn J Breed 8:169–170

    Google Scholar 

  • Nakagawa M-O, Soga Y, Watanabe S, Gocho H, Nishio K (1959) Genetical studies to wheat mosaic virus. 2. Genes affecting the inheritance of susceptibility to strains of yellow mosaic virus in the varietal crosses of wheat. Jpn J Breed 8:169–170

    Google Scholar 

  • Narasimhamoorthy B, Gill B, Fritz A, Nelson J, Brown-Guedira G (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    Article  PubMed  CAS  Google Scholar 

  • Perovic D, Förster J, Devaux P, Hariri D, Guilleroux M, Kanyuka K, Lyons R, Weyen J, Feuerhelm D, Kastirr U, Sourdille P, Röder M, Ordon F (2009) Mapping and diagnostic marker development for Soil-borne cereal mosaic virus resistance in bread wheat. Mol Breed 23:641–653

    Article  CAS  Google Scholar 

  • Quick JS, Stromberger JA, Clayshulte S, Clifford B, Johnson JJ, Peairs FB, Rudolph JB, Lorenz K (2001) Registration of ‘Prairie Red’ wheat. Crop Sci 41:1362–1363

    Article  Google Scholar 

  • Ratti C, Budge G, Ward L, Clover G, Rubies-Autonell C, Henry C (2004) Detection and relative quantitation of Soil-borne cereal mosaic virus (SBCMV) and Polymyxa graminis in winter wheat using real-time PCR (TaqMan®). J Virol Methods 122:95–103

    Article  PubMed  CAS  Google Scholar 

  • Roane CW, Starling TM, McKinney HH (1954) Observations on wheat mosaic in Virginia. Plant Dis Rep 38:14–18

    Google Scholar 

  • Saghai-Maroof M, Soliman K, Jorgensen RA, Allard R (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Nat Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sawada E (1927) Control of wheat yellow mosaic virus. J Plant Prot 14:444–449

    Google Scholar 

  • Sears RG, Martin TJ, Cox TS, Chung OK, Curran SP, Heer WF, Witt MD (1997) Registration of ‘Karl 92’ wheat. Crop Sci 37:628

    Google Scholar 

  • Shaalan ML, Heyne EG, Sill WH Jr (1966) Breeding wheat for resistance to soil-borne wheat mosaic virus, wheat streak-mosaic virus, leaf rust, stem rust, and bunt. Phytopathol 56:664–668

    Google Scholar 

  • Shirako Y, Brakke MK (1984) Two purified RNAs of soil-borne wheat mosaic virus are needed for infection. J Gen Virol 65:119–127

    Article  CAS  Google Scholar 

  • Shirako Y, Suzuki N, French RC (2000) Similarity and divergence among viruses in the genus Furovirus. Virol 270:201–207

    Article  CAS  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114:165–175

    Article  PubMed  CAS  Google Scholar 

  • Torrance L, Koenig R (2005) Genus Furovirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, London, pp 1027–1032

  • Verchot J, Driskel BA, Zhu Y, Hunger RM, Littlefield LJ (2001) Evidence that soilborne wheat mosaic virus moves long distance through the xylem in wheat. Protoplasma 218:57–66

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Shi J, Carlson SR, Cregan PB, Ward RW, Diers BW (2003) A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA marker. Crop Sci 43:1828–1832

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2010) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgenncsuedu/qtlcart/WQTLCarthtm)

  • Yang J, Chen J, Cheng Y, Adams M (2001) Sequence analysis of a soilborne wheat mosaic virus isolate from Italy shows that it is the same virus as European wheat mosaic virus and Soilborne rye mosaic virus. Sci China, Ser C Life Sci 44:216–224

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the National Research Initiative of USDA’s Cooperative State Research, Education and Extension Service, CAP (Grant No. 2006-55606-16629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Johnson.

Additional information

Yuanfeng Hao and Yingying Wang equally contributed to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 700 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Y., Wang, Y., Chen, Z. et al. A conserved locus conditioning Soil-borne wheat mosaic virus resistance on the long arm of chromosome 5D in common wheat. Mol Breeding 30, 1453–1464 (2012). https://doi.org/10.1007/s11032-012-9731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9731-x

Keywords

Navigation